rozwiazac rownanie..

Własności funkcji trygonometrycznych i cyklometrycznych. Tożsamości. RÓWNANIA I NIERÓWNOŚCI.
egeria
Użytkownik
Użytkownik
Posty: 15
Rejestracja: 20 lis 2006, o 21:18
Płeć: Kobieta
Lokalizacja: Wawa
Podziękował: 8 razy

rozwiazac rownanie..

Post autor: egeria » 23 wrz 2007, o 17:15

rozwiaz albo jakby to uproscic w miare..
\(\displaystyle{ 6\cos^2x+2\sin^2 2x-5=0}\)

Awatar użytkownika
Tristan
Gość Specjalny
Gość Specjalny
Posty: 2357
Rejestracja: 24 kwie 2005, o 14:28
Płeć: Mężczyzna
Podziękował: 27 razy
Pomógł: 556 razy

rozwiazac rownanie..

Post autor: Tristan » 23 wrz 2007, o 17:31

Zauważ, że \(\displaystyle{ \sin 2x= 2 \sin x \cos x}\), więc \(\displaystyle{ 2 \sin^2 2x= 2( 4 \sin^2 x \ cos^2 x)=8 (1 - \cos^2 x) \cos^2 x = 8 \cos^2 x - 8 \cos^4 x}\). Podstawiając to do równania otrzymujemy:
\(\displaystyle{ 6 \cos^2 x +8 \cos^2 x -8 \cos^4 x - 5=0 \\ -8 \cos^4 x +14 \cos^2 x -5=0}\)
Teraz wystarczy, że podstawisz \(\displaystyle{ t = \cos^2 x , t }\). Dalej poradzisz sobie sam.

egeria
Użytkownik
Użytkownik
Posty: 15
Rejestracja: 20 lis 2006, o 21:18
Płeć: Kobieta
Lokalizacja: Wawa
Podziękował: 8 razy

rozwiazac rownanie..

Post autor: egeria » 23 wrz 2007, o 17:39

hehe dzieki...

ODPOWIEDZ