Rozkład na czynniki przy użyciu wielomianów

Własności wielomianów; pierwiastki, współczynniki. Dzielenie wielomianów. Wzory Viete'a. RÓWNANIA I NIERÓWNOŚCI wielomianowe (wyższych stopni). Rozkład na czynniki.
Ogorek00
Użytkownik
Użytkownik
Posty: 63
Rejestracja: 2 sty 2017, o 19:01
Płeć: Mężczyzna
Lokalizacja: Gdańsk
Podziękował: 42 razy

Rozkład na czynniki przy użyciu wielomianów

Post autor: Ogorek00 » 3 lis 2017, o 12:57

Rozłóż na czynniki za pomocą wielomianów
\(\displaystyle{ (x+y+z)^{3} - x^{3} - y^{3} - z^{3}}\)

Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 15207
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 161 razy
Pomógł: 5046 razy

Re: Rozkład na czynniki przy użyciu wielomianów

Post autor: Premislav » 4 lis 2017, o 05:03

Zauważmy, że powyższe wyrażenie zeruje się gdy którakolwiek z liczb \(\displaystyle{ x+y, y+z, z+x}\) jest równa \(\displaystyle{ 0}\). Jeżeli np. potraktujemy zatem
\(\displaystyle{ (x+y+z)^{3} - x^{3} - y^{3} - z^{3}}\) jak wielomian zmiennej \(\displaystyle{ x}\), to będzie to wielomian drugiego stopnia (trzecia potęga się anihiluje) z miejscami zerowymi \(\displaystyle{ x_1=-y, x_2=-z}\), zatem możemy go zapisać w postaci \(\displaystyle{ a(x+y)(x+z)}\) gdzie \(\displaystyle{ a}\) to współczynnik przy \(\displaystyle{ x^2}\). Ten współczynnik wyniesie zaś, jak nietrudno zauważyć ze wzoru na sumę sześcianów (\(\displaystyle{ y+z}\) traktujemy jak jeden wyraz w tym nawiasie) \(\displaystyle{ 3(y+z)}\).
Podsumowując, mamy
\(\displaystyle{ (x+y+z)^{3} - x^{3} - y^{3} - z^{3}=3(y+z)(x+y)(x+z)}\)
Podejrzewam jednak, że w zadaniu chodziło o jakieś trickowe wykorzystanie wzorów Viete'a, ale tak tego nie umiem rozwiązać.

-- 4 lis 2017, o 06:05 --

Najprościej się zauważa przy piwie. Polecam, Juan Peron II, tor IV, co małe dzieci ogrywał w karty.

Awatar użytkownika
mariuszm
Użytkownik
Użytkownik
Posty: 6755
Rejestracja: 25 wrz 2007, o 01:03
Płeć: Mężczyzna
Lokalizacja: 53°02'N 18°35'E
Pomógł: 1224 razy

Re: Rozkład na czynniki przy użyciu wielomianów

Post autor: mariuszm » 10 gru 2017, o 16:49

Premislav, bawiłeś sie funkcjami symetrycznymi ?
i nie mam tu na myśli tych palindromicznych wielomianów jednej zmiennej

Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 15207
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 161 razy
Pomógł: 5046 razy

Re: Rozkład na czynniki przy użyciu wielomianów

Post autor: Premislav » 10 gru 2017, o 17:02

Nie. A co, masz do polecenia jakieś materiały? Jak tak, to bardzo proszę, chętnie coś poczytam/porozwiązuję (wszystko ciekawsze niż to, co muszę robić).

Awatar użytkownika
mariuszm
Użytkownik
Użytkownik
Posty: 6755
Rejestracja: 25 wrz 2007, o 01:03
Płeć: Mężczyzna
Lokalizacja: 53°02'N 18°35'E
Pomógł: 1224 razy

Re: Rozkład na czynniki przy użyciu wielomianów

Post autor: mariuszm » 10 gru 2017, o 17:54

Ja trochę czytałem u Sierpińskiego (monografie matematyczne tom 10)
Ciekawy jestem czy funkcje symetryczne pomogą tutaj ?
Na pomysł z funkcjami symetrycznymi wpadłem dlatego że funkcja do rozłożenia jest symetryczna
Jeśli chodzi o wzory Vieta to występują w nich funkcje symetryczne podstawowe
zwane także elementarnymi funkcjami symetrycznymi
Aby skorzystać z wzorów Vieta trzeba najpierw wyrazić funkcję symetryczną za pomocą
funkcji symetrycznych podstawowych (są do tego algorytmy redukcji)
Co takiego nudnego masz ? Pierwszy rok doktoranckich ?
Ostatnio zmieniony 10 gru 2017, o 18:01 przez mariuszm, łącznie zmieniany 1 raz.

Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 15207
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 161 razy
Pomógł: 5046 razy

Re: Rozkład na czynniki przy użyciu wielomianów

Post autor: Premislav » 10 gru 2017, o 17:59

Nie jestem na doktoranckich (i nigdy nie będę), później zacząłem studia matematyczne (wcześniej studiowałem ekonomię na UW), a zresztą jeszcze sobie czegoś tam nie zdałem i się tym bardziej opóźniło, mam teraz takie pasjonujące przedmioty jak szeregi czasowe czy matematyka ubezpieczeń majątkowych i osobowych. Można się zaziewać na śmierć.

Dzięki, to się nazywa Zasady algebry wyższej? Znalazłem, poczytam.

Awatar użytkownika
mariuszm
Użytkownik
Użytkownik
Posty: 6755
Rejestracja: 25 wrz 2007, o 01:03
Płeć: Mężczyzna
Lokalizacja: 53°02'N 18°35'E
Pomógł: 1224 razy

Re: Rozkład na czynniki przy użyciu wielomianów

Post autor: mariuszm » 11 gru 2017, o 08:46

Tutaj akurat łatwo było zgadnąć , spróbujcie rozłożyć ten wielomian

\(\displaystyle{ x^3 + y^3 + z^3 - 3xyz}\)

Awatar użytkownika
Richard del Ferro
Użytkownik
Użytkownik
Posty: 190
Rejestracja: 13 mar 2016, o 22:48
Płeć: Mężczyzna
Podziękował: 9 razy
Pomógł: 16 razy

Re: Rozkład na czynniki przy użyciu wielomianów

Post autor: Richard del Ferro » 8 sty 2018, o 02:10

lev kurlyandchik, wielomiany symetryczne
\(\displaystyle{ x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-xz-yz)}\)
czyli inaczej
\(\displaystyle{ x^3+y^3+z^3-3xyz= \frac{1}{2} (x+y+z)(2x^2+2y^2+2z^2-2xy-2xz-2yz)}\)
\(\displaystyle{ x^3+y^3+z^3-3xyz= \frac{1}{2} (x+y+z)((x-y)^{2}+(x-z)^{2}+(z-y)^{2})}\)
\(\displaystyle{ x^3+y^3+z^3-3xyz=x^3+y^3+3x^2y+3xy^2+z^3-3xyz-3x^2y-3xy^2=(x+y)^3+z^3-3xy(x+y+z)=(x+y+z)((x+y)^2+z^2-(x+y)z)-3xy(x+y+z)=(x+y+z)(x^2+2xy+y^2+z^2-xy-xz-3xy)=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)}\)

ODPOWIEDZ