Opisać zbiór w zależności od parametru

Definicja. Postać wykładnicza i trygonometryczna. Zagadnienia związane z ciałem liczb zespolonych.
abc2343
Użytkownik
Użytkownik
Posty: 7
Rejestracja: 25 paź 2014, o 16:22
Płeć: Kobieta
Lokalizacja: Polska

Opisać zbiór w zależności od parametru

Post autor: abc2343 » 30 paź 2017, o 14:13

Opisać w zależności od parametru \(\displaystyle{ p \in \mathbb{C}}\) zbiór \(\displaystyle{ Z_{p}= \{ z: (iz+\overline{z})^2=p\}}\)

Jeśli rozpiszę to jako \(\displaystyle{ z=a + ib}\) powyższy wzór wygląda w ten sposób:

\(\displaystyle{ 2i(a-b)^2=p}\)

Ale nie do końca wiem co dalej z tym zrobić. Właściwie kompletnie nie wiem co dalej robić, bo zadania z parametrami to zawsze była dla mnie czarna magia.
Ostatnio zmieniony 30 paź 2017, o 15:06 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Niepoprawnie napisany kod LaTeX-a. Proszę zapoznaj się z http://matematyka.pl/178502.htm . Nie stosuj wzorów matematycznych w nazwie tematu. Temat umieszczony w złym dziale.

Awatar użytkownika
Igor V
Użytkownik
Użytkownik
Posty: 1605
Rejestracja: 16 lut 2011, o 16:48
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 18 razy
Pomógł: 604 razy

Opisać zbiór w zależności od parametru

Post autor: Igor V » 30 paź 2017, o 15:02

Widać że musi być \(\displaystyle{ \Re(p) = 0 \wedge \Im(p) \ge 0}\). Powiedzmy że \(\displaystyle{ p' = \Im(p)}\), wtedy :
\(\displaystyle{ 2(a - b)^2 = p'}\)
\(\displaystyle{ \begin{cases} b = a - \sqrt{ \frac{p'}{2}} \ \text{dla} \ a \ge b} \\ b = a + \sqrt{ \frac{p'}{2}} \ \text{dla} \ a < b \end{cases}}\)

Chyba widać teraz już co to za funkcje dla ustalonego \(\displaystyle{ p}\) ?

ODPOWIEDZ