Przekształcenia potęg

Proste problemy dotyczące wzorów skróconego mnożenia, ułamków, proporcji oraz innych przekształceń.
GeneralXavi

Przekształcenia potęg

Post autor: GeneralXavi » 30 paź 2017, o 01:14

Witam, analizuję rozwiązanie z vademecum nowej ery teraz matura, matematyka rozszerzona i nie rozumiem przekształcenia

\(\displaystyle{ 7^{30} - 5^{30} = (7 ^{15} - 5^{15})(7 ^{15} + 5^{15}) = (7 ^{5} - 5^{5})(7 ^{10} + 35^{5} +5^{10})(7 ^{15} + 5^{15})}\) // poprawiłem znak

O ile przekształcenie po pierwszym nawiasie rozumiem, ze wzoru skróconego mnożenia, to końcowej postaci w ogóle... szczególnie mnie ta 35 zastanawia. Domyślam się, że od 7 razy 5, ale jakim cudem i dlaczego? Proszę o rozpisanie
Ostatnio zmieniony 30 paź 2017, o 01:20 przez GeneralXavi, łącznie zmieniany 1 raz.

Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 15206
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 161 razy
Pomógł: 5046 razy

Re: Przekształcenia potęg

Post autor: Premislav » 30 paź 2017, o 01:18

Coś tu jest ewidentnie nie tak, gdzieś te minusy zostały źle postawione. Moim zdaniem powinno być:
\(\displaystyle{ 7^{30} - 5^{30} = (7 ^{15} - 5^{15})(7 ^{15} + 5^{15}) = (7 ^{5} - 5^{5})(7 ^{10} + 35^{5} +5^{10})(7 ^{15} {\red +} 5^{15})}\)
Ze wzoru skróconego mnożenia na różnicę sześcianów:
\(\displaystyle{ a^3-b^3=(a-b)(a^2+ab+b^2)}\),
gdzie za a bierzemy \(\displaystyle{ 7^5}\), zaś za b przyjmujemy \(\displaystyle{ 5^5}\), mamy
\(\displaystyle{ 7^{15}-5^{15}=(7^5-5^5)(7^{10}+7^5\cdot 5^5+5^{10})=\ldots}\)

GeneralXavi

Re: Przekształcenia potęg

Post autor: GeneralXavi » 30 paź 2017, o 01:21

Ok. Dziękuję, już rozumiem. Faktycznie tam powinien być plus. Poprawione

ODPOWIEDZ