Udowodnić równość

Własności ciągów i zbieżność, obliczanie granic. Twierdzenia o zbieżności.
Maslow
Użytkownik
Użytkownik
Posty: 64
Rejestracja: 7 lut 2015, o 17:37
Płeć: Kobieta
Lokalizacja: Polska
Podziękował: 31 razy

Udowodnić równość

Post autor: Maslow » 29 paź 2017, o 15:14

Wykaż, że jeżeli ciąg liczb dodatnich \(\displaystyle{ \left\{ a_{n} \right\}}\) dla dowolnego \(\displaystyle{ n \in \NN ^{*}}\) spełnia zależność:

\(\displaystyle{ \sum_{k=1}^{n}a ^{3} _{k}= \left( \sum_{k=1}^{n}a _{k} \right) ^{2}}\) to \(\displaystyle{ a _{n}=n}\) dla każdego \(\displaystyle{ n}\).
Ostatnio zmieniony 29 paź 2017, o 16:34 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.

Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 15207
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 161 razy
Pomógł: 5046 razy

Udowodnić równość

Post autor: Premislav » 29 paź 2017, o 15:22

Indukcja po \(\displaystyle{ n}\), pokazujemy, że przy tej równości dla każdego \(\displaystyle{ n \in \NN^+}\) mamy \(\displaystyle{ a_n=n}\).
W drugim kroku indukcyjnym przyda się wzór na sumę początkowych \(\displaystyle{ n}\) liczb naturalnych dodatnich: \(\displaystyle{ 1+\ldots+n= \frac{n(n+1)}{2}}\)

Awatar użytkownika
kerajs
Użytkownik
Użytkownik
Posty: 7895
Rejestracja: 17 maja 2013, o 10:23
Płeć: Mężczyzna
Podziękował: 243 razy
Pomógł: 3093 razy

Udowodnić równość

Post autor: kerajs » 29 paź 2017, o 15:26

Indukcją:
\(\displaystyle{ n=1:\\ a_1^3=a_1^2 \wedge a_1>0 \Rightarrow a_1=1\\ n=2:\\ 1^3+a_2^3=(1+a_2)^2 \wedge a_2>0 \Rightarrow a_2=2\\ T:\\ \left( \frac{(n-1)n}{2} \right) ^2+a_n^3=\left( \frac{(n-1)n}{2} +a_n\right) ^2}\)

EDIT
Maslow pisze:I teraz to udowodnić indukcją ?
Nie, gdyż została już użyta. Teraz ze wskazanego równania należy wyliczyć że \(\displaystyle{ a_n=n}\).
\(\displaystyle{ a_n^3=n(n-1)a_n+a_n^2 \ \ \ \wedge a_n>0\\ a_n(a_n^2-a_n-n(n-1))=0\\ a_n=0 \vee (a_n-n)(a_n-(1-n))=0 \\ a_n=0 \vee a_n=n \vee a_n=1-n\\ a_n=n}\)
Wzorek z tezy zawiera zależności:
\(\displaystyle{ 1^3+2^3+...+(n-1)^3=\left( \frac{(n-1)n}{2} \right) ^2\\ 1+2+...+(n-1)= \frac{(n-1)n}{2}}\)
Ostatnio zmieniony 29 paź 2017, o 17:37 przez kerajs, łącznie zmieniany 1 raz.

Maslow
Użytkownik
Użytkownik
Posty: 64
Rejestracja: 7 lut 2015, o 17:37
Płeć: Kobieta
Lokalizacja: Polska
Podziękował: 31 razy

Udowodnić równość

Post autor: Maslow » 29 paź 2017, o 16:03

kerajs pisze: T:\
\(\displaystyle{ \left( \frac{(n-1)n}{2} \right) ^2+a_n^3=\left( \frac{(n-1)n}{2} +a_n\right) ^2}\)
I teraz to udowodnić indukcją ?

Awatar użytkownika
Premislav
Użytkownik
Użytkownik
Posty: 15207
Rejestracja: 17 sie 2012, o 13:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 161 razy
Pomógł: 5046 razy

Udowodnić równość

Post autor: Premislav » 29 paź 2017, o 16:18

Można i tak: indukcja zupełna (silna), w pierwszym kroku indukcyjnym dostajemy do rozwiązania w dodatnich \(\displaystyle{ a_1^3=a_1^2}\), co daje \(\displaystyle{ a_1=1}\), a w drugim kroku indukcyjnym pokazujemy, że jeśli \(\displaystyle{ a_k=k}\) dla \(\displaystyle{ k=1\ldots n}\), to także \(\displaystyle{ a_{n+1}=n+1}\).
Ze wzoru na różnicę kwadratów \(\displaystyle{ a^2-b^2=(a-b)(a+b)}\)
mamy
\(\displaystyle{ \left(\sum_{k=1}^{n+1}a _{k}\right) ^{2}-\left(\sum_{k=1}^{n}a _{k}\right) ^{2}=a_{n+1}\left( a_{n+1}+2 \sum_{k=1}^{n}a_k \right)}\)
czyli
\(\displaystyle{ a_{n+1}^3= \sum_{k=1}^{n+1} a_k^3- \sum_{k=1}^{n}a_k^3=a_{n+1}^2+2a_{n+1} \sum_{k=1}^{n}a_k}\)
a po podzieleniu stronami przez dodatnie \(\displaystyle{ a_{n+1}}\) jest
\(\displaystyle{ a_{n+1}^2=a_{n+1}+2 \sum_{k=1}^{n}a_k}\)
czyli
\(\displaystyle{ a_{n+1}^2-a_{n+1}-n(n+1)=0}\)
Funkcja \(\displaystyle{ f(x)=x^2-x}\) jest ściśle rosnąca, a więc różnowartościowa, dla \(\displaystyle{ x> \frac 1 2}\) (z własności funkcji kwadratowej), a po lewej stronie mamy
\(\displaystyle{ f(a_{n+1})-f(n+1)}\).-- 29 paź 2017, o 17:23 --Choć trzeba tu jeszcze skomentować fakt, że \(\displaystyle{ a_{n+1}>\frac 1 2}\)

ODPOWIEDZ