Równania i nierówności z wartością bezwzględną

Definicja, własności - specyfika równań i nierówności.
coruscate
Użytkownik
Użytkownik
Posty: 3
Rejestracja: 27 paź 2017, o 23:47
Płeć: Kobieta
Lokalizacja: Warszawa

Równania i nierówności z wartością bezwzględną

Post autor: coruscate » 28 paź 2017, o 00:07

Cześć!

Podjęłam próbę samodzielnego wykonania czterech zadań z wartością bezwzględną i niestety żadne z nich mi nie wyszło. Oto jeden z nich, może chociaż ten ktoś mi pomoże zrozumieć i zrobić.

1. \(\displaystyle{ |x^{2}-4x| = 6- |x|}\)
Narysowałam sobie oś, na której umieściłam wstępnie punkty 0 oraz 4 (wyliczone z \(\displaystyle{ x^{2}-4x=0}\)).
Przekształciłam równanie tak:
\(\displaystyle{ |x^{2}-4x| + |x| - 6 = 0}\)

I tu pojawiły się problemy. Postanowiłam rozważyć trzy przypadki, kiedy \(\displaystyle{ x \in (- \infty, 0\rangle, x \in (0, 4)}\) oraz ostatni \(\displaystyle{ x \in \langle 4, + \infty)}\). W pierwszym wyszedł mi brak rozwiązań, w drugim coś z \(\displaystyle{ \sqrt{1}/2}\) i w ostatnim bardzo dziwna delta... Nie rozumiem jak mogę to zrobić dobrze i już nie wiem co robić. Czy ktoś by pomógł? Z wytłumaczeniem?
Ostatnio zmieniony 28 paź 2017, o 19:18 przez Jan Kraszewski, łącznie zmieniany 2 razy.
Powód: Nieregulaminowy zapis - obrazki zamiast zapisu w LaTeX-u.

SlotaWoj
Moderator
Moderator
Posty: 4211
Rejestracja: 25 maja 2012, o 21:33
Płeć: Mężczyzna
Lokalizacja: Kraków PL
Podziękował: 2 razy
Pomógł: 757 razy

Równania i nierówności z wartością bezwzględną

Post autor: SlotaWoj » 28 paź 2017, o 01:06

Równanie jest równoważne układowi:
  • \(\displaystyle{ \begin{cases} \ \ \ x^2-5x-6=0\ \wedge\ x<0 \\ \ -x^2+5x-6=0\ \wedge\ 0\le x<4 \\ \ \ \ x^2-3x-6=0\ \wedge\ x>4 \end{cases}}\)
Każde z tych równań ma rozwiązanie.

adri@n
Użytkownik
Użytkownik
Posty: 104
Rejestracja: 6 wrz 2009, o 14:00
Płeć: Mężczyzna
Podziękował: 12 razy
Pomógł: 5 razy

Równania i nierówności z wartością bezwzględną

Post autor: adri@n » 28 paź 2017, o 11:14

Jeżeli chcesz, żeby pomóc znaleźć błąd w Twoim rozumowaniu, musisz je tutaj przedstawić. Może po prostu przepisz tu swoją wersję rozwiązania.

coruscate
Użytkownik
Użytkownik
Posty: 3
Rejestracja: 27 paź 2017, o 23:47
Płeć: Kobieta
Lokalizacja: Warszawa

Równania i nierówności z wartością bezwzględną

Post autor: coruscate » 28 paź 2017, o 13:51

Tak, no właśnie, chyba nie zrozumiem dopóki nie napiszę tego, co próbowałam zdziałać. Oto moja próba rozwiązania tego przykładu:

\(\displaystyle{ |x^{2}-4x| + |x| - 6 = 0}\)


1) Kiedy \(\displaystyle{ x \in (- \infty , 0)\\}\)
\(\displaystyle{ -(x^{2}-4x) - (x) - 6 = 0\\ -x^{2} + 4x - x - 6 = 0\\ x^{2} - 3x + 6 = 0}\)

I delta mi wyszła -15, więc jakby brak rozwiązań...

2) Kiedy \(\displaystyle{ x \in <0, 4>\\}\)
\(\displaystyle{ -x^{2} + 4x + x - 6 = 0\\ -x^{2} + 5x - 6 = 0}\)

Delta mi wyszła 1, a:
\(\displaystyle{ x = \frac{-5 - \sqrt{1}}{2}}\)
oraz
\(\displaystyle{ x = \frac{-5 + \sqrt{1}}{2}}\)

3) Kiedy \(\displaystyle{ x \in (4, +\infty)\\}\)
\(\displaystyle{ x^{2} - 4x + x - 6 = 0\\ -x^{2} -3x - 6 = 0}\)

Delta mi wyszła \(\displaystyle{ \sqrt{33}}\) i dalej już nie liczyłam, bo nic mi tu nie pasowało.

Dodatkowo te 0 oraz 4 policzyłam z:
\(\displaystyle{ x^{2} - 4x = 0}\)

a4karo
Użytkownik
Użytkownik
Posty: 19209
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 6 razy
Pomógł: 3247 razy

Równania i nierówności z wartością bezwzględną

Post autor: a4karo » 28 paź 2017, o 16:07

A czemu dla \(\displaystyle{ x<0}\) piszesz \(\displaystyle{ -x^2+4x}\)?

w ostatnim przypadku (nie ma minusa przy \(\displaystyle{ x^2}\)) \(\displaystyle{ \Delta=33}\). Dlaczego Cię to zniechęca?

coruscate
Użytkownik
Użytkownik
Posty: 3
Rejestracja: 27 paź 2017, o 23:47
Płeć: Kobieta
Lokalizacja: Warszawa

Równania i nierówności z wartością bezwzględną

Post autor: coruscate » 28 paź 2017, o 19:15

Cóż, zazwyczaj odpowiedzi wychodzą w miarę ładne, a tutaj żadna nie jest "ładna", więc uznałam, że gdzieś nastąpiła pomyłka. Nie wiem jak się odnieść do tego:

Tutaj z \(\displaystyle{ |x^{2}-4x|}\)
\(\displaystyle{ x^{2}-4x}\) dla \(\displaystyle{ x^{2}-4x \ge 0}\)
więc \(\displaystyle{ x \ge 0}\) i \(\displaystyle{ x \ge 4}\)

\(\displaystyle{ -x^{2}+4x}\) dla \(\displaystyle{ x^{2}-4x < 0}\)
\(\displaystyle{ x < 0}\) i \(\displaystyle{ x < 4}\)

Co to zmienia, że są dwie wartości dla x? Bierzemy pod uwagę tylko jedną z nich? Dodatkowo dla samego \(\displaystyle{ |x|}\) również jest 0 i to mnie już pogubiło. Chyba nigdy nie zrobię tego zadania.

a4karo
Użytkownik
Użytkownik
Posty: 19209
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 6 razy
Pomógł: 3247 razy

Re: Równania i nierówności z wartością bezwzględną

Post autor: a4karo » 28 paź 2017, o 20:06

Narysuj sobie wykres \(\displaystyle{ x^2-4x}\)

ODPOWIEDZ