Transmitancja układu mechanicznego.

szuchasek
Użytkownik
Użytkownik
Posty: 368
Rejestracja: 9 paź 2013, o 16:26
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 50 razy

Transmitancja układu mechanicznego.

Post autor: szuchasek » 27 paź 2017, o 15:34

https://ibb.co/iKOmt6

Napisz równania różniczkowe. Zakładamy, że na masę \(\displaystyle{ m}\) działa siła zewnątrzna \(\displaystyle{ u(t)}\).

Znajdz transmitancję operatorową opisującą wpływ tej siły na przesunięcie masy \(\displaystyle{ m}\). Wyznacz model stanowy. Przyjmij \(\displaystyle{ y(t)=z_{1}(t)}\) oraz wektor stanu \(\displaystyle{ x(t)=[z_{1}(t) z_{1}'(t) z_{2}(t) ]^{T}}\).

Moje rozwiązanie:

\(\displaystyle{ \begin{cases} u(t)= mz_{1}''(t)+r_{1}z_{1}'(t)+kz_{1}(t)+k(z_{1}(t)-z_{2}(t))\\ 0= r_{2}z_{2}'(t)+kz_{2}(t)+k(z_{2}(t)-z_{1}(t))\end{cases}}\)

Jaki powinien być wzór na transmitancję w tym konkretnym wypadku? + czy mam dobrze ten układ równań?

janusz47
Użytkownik
Użytkownik
Posty: 5280
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 6 razy
Pomógł: 1156 razy

Transmitancja układu mechanicznego.

Post autor: janusz47 » 27 paź 2017, o 22:23

W układzie wyróżniłeś jedną różną od zera prędkość masy \(\displaystyle{ m}\) oraz wymuszenia \(\displaystyle{ z_{1}, z_{2}}\) równoważone przez siły reakcji elementów odpowiednio \(\displaystyle{ m, r_{1}, k, r_{2}.}\)

Układ równań jest poprawny.

Potrafiłeś ułożyć układ równań różniczkowych dla układu mechanicznego, to tym bardziej potrafisz wyznaczyć jego transmitancję:

\(\displaystyle{ G(s) = \frac{Z_{2}(s)}{Z_{1}(s)}}\) (1)

W tym celu dokonaj przekształcenia Laplace'a pierwszego i drugiego równania przy zerowych warunkach początkowych.

Wyznacz transformaty \(\displaystyle{ Z_{1}(s), Z_{2}(s)}\) i podstaw do równania (1).

SlotaWoj
Moderator
Moderator
Posty: 4211
Rejestracja: 25 maja 2012, o 21:33
Płeć: Mężczyzna
Lokalizacja: Kraków PL
Podziękował: 2 razy
Pomógł: 757 razy

Re: Transmitancja układu mechanicznego.

Post autor: SlotaWoj » 28 paź 2017, o 01:39

Wejściem jest siła \(\displaystyle{ u(t)}\) , a wyjściem przemieszczenie \(\displaystyle{ z_1(t)}\) , więc:
  • \(\displaystyle{ G(s)=\frac{Z_1(s)}{U(s)}}\)

janusz47
Użytkownik
Użytkownik
Posty: 5280
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 6 razy
Pomógł: 1156 razy

Re: Transmitancja układu mechanicznego.

Post autor: janusz47 » 28 paź 2017, o 11:19

Wielkości \(\displaystyle{ z_{1}(t)}\) jak i \(\displaystyle{ z_{2}(t)}\) to nie są przemieszczenia tylko dodatkowe wymuszenia.

Z zamieszczonego rysunku wynika, że wymuszenie \(\displaystyle{ z_{2}(t)}\) nie dotyczy bezpośrednio masy \(\displaystyle{ m}\) lecz ma także wpływ na jej ruch.

Z układu równań różniczkowych po dokonaniu przekształcenia Laplace'a, znajdujemy transformaty \(\displaystyle{ Z_{1}(s), Z_{2}(s)}\)

W związku z tym transmitancja operatorowa jako iloraz transformat wyjścia i wejścia (jak Pan słusznie zwrócił uwagę) wynosi:

\(\displaystyle{ G(s)= \frac{Z_{1}(s)+Z_{2}(s)}{U(s)}.}\)

SlotaWoj
Moderator
Moderator
Posty: 4211
Rejestracja: 25 maja 2012, o 21:33
Płeć: Mężczyzna
Lokalizacja: Kraków PL
Podziękował: 2 razy
Pomógł: 757 razy

Re: Transmitancja układu mechanicznego.

Post autor: SlotaWoj » 28 paź 2017, o 22:05

janusz47 pisze:Wielkości \(\displaystyle{ z_{1}(t)}\) jak i \(\displaystyle{ z_{2}(t)}\) to nie są przemieszczenia tylko dodatkowe wymuszenia.
  1. Jeśli nie przemieszczenia, to co?
  2. Wymuszenie nie może być zmienną stanu!
Edit: Wykrzyknik w miejsce znaku zapytania.
Ostatnio zmieniony 29 paź 2017, o 01:00 przez SlotaWoj, łącznie zmieniany 1 raz.

janusz47
Użytkownik
Użytkownik
Posty: 5280
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 6 razy
Pomógł: 1156 razy

Re: Transmitancja układu mechanicznego.

Post autor: janusz47 » 28 paź 2017, o 22:39

Nie zgodzę się z tym stwierdzeniem.

A kto mówił, że nie ma przemieszczenia?

Jakie wielkości opisane są układem równań różniczkowych?

Korzystam z pojęć zawartych w podręczniku:

Krzysztof Amborski , Andrzej Marusak . Ćwiczenia z Teorii Sterowania. Układy Liniowe. Wydawnictwo Politechniki Warszawskiej Warszawa 1979.

SlotaWoj
Moderator
Moderator
Posty: 4211
Rejestracja: 25 maja 2012, o 21:33
Płeć: Mężczyzna
Lokalizacja: Kraków PL
Podziękował: 2 razy
Pomógł: 757 razy

Re: Transmitancja układu mechanicznego.

Post autor: SlotaWoj » 29 paź 2017, o 01:04

janusz47 pisze:Wielkości \(\displaystyle{ z_{1}(t)}\) jak i \(\displaystyle{ z_{2}(t)}\) to nie są przemieszczenia tylko dodatkowe wymuszenia.
janusz47 pisze:Nie zgodzę się z tym stwierdzeniem.
Ale to stwierdzenie jest Twoje!

ODPOWIEDZ