Uogólniona suma zbiorów - sprawdzić, czy zależnosć zachodzi

Algebra zbiorów. Relacje, funkcje, iloczyny kartezjańskie... Nieskończoność, liczby kardynalne... Aksjomatyka.
Kalkulatorek
Użytkownik
Użytkownik
Posty: 127
Rejestracja: 3 cze 2014, o 21:01
Płeć: Mężczyzna
Podziękował: 52 razy

Uogólniona suma zbiorów - sprawdzić, czy zależnosć zachodzi

Post autor: Kalkulatorek » 27 paź 2017, o 14:34

Sprawdzić, czy
\(\displaystyle{ \bigcup(\mathcal A \cup \mathcal B) = \bigcup \mathcal A \cup \bigcup \mathcal B}\)

Spróbowałem rozwiązać to zadanie przy użyciu aksjomatu ekstensjonalności - weźmy dowolny obiekt \(\displaystyle{ x}\)
\(\displaystyle{ x\in \bigcup (\mathcal A \cup \mathcal B) \iff(\exists C\in \mathcal A \cup \mathcal B)(x \in C)}\)
Teraz rozpisuję kwantyfikator egzystencjalny:
\(\displaystyle{ x\in \bigcup (\mathcal A \cup \mathcal B) \iff(\exists C)((C \in \mathcal A \lor C \in \mathcal B)\land x\in C)}\)
Teraz rozbijam to na dwa kwantyfikatory (Nie będę już przepisywał lewej strony, bo ona się nie zmieni)
\(\displaystyle{ \iff (\exists C)(C \in \mathcal A \land x\in C) \lor (\exists C)(C\in \mathcal B \land x\in C)}\)
\(\displaystyle{ \iff x \in \bigcup \mathcal A \lor x\in \bigcup \mathcal B}\)
Co kończyłoby dowód.

Czy jest coś, co powinienem zmienić w rozwiązaniu tego zadania? Czy jest ono w ogóle poprawne?

Jan Kraszewski
Administrator
Administrator
Posty: 27286
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4594 razy

Uogólniona suma zbiorów - sprawdzić, czy zależnosć zachodzi

Post autor: Jan Kraszewski » 27 paź 2017, o 15:17

Rozwiązanie jest poprawne, ale w tym miejscu
Kalkulatorek pisze:Teraz rozbijam to na dwa kwantyfikatory (Nie będę już przepisywał lewej strony, bo ona się nie zmieni)
\(\displaystyle{ \iff (\exists C)(C \in \mathcal A \land x\in C) \lor (\exists C)(C\in \mathcal B \land x\in C)}\)
przytoczyłbym/nazwałbym prawo rachunku kwantyfikatorów, z którego korzystasz, bo to kluczowe przejście w dowodzie.

JK

ODPOWIEDZ