Rozwiązanie nierówności

Proste problemy dotyczące wzorów skróconego mnożenia, ułamków, proporcji oraz innych przekształceń.
astenna
Użytkownik
Użytkownik
Posty: 29
Rejestracja: 17 sty 2015, o 13:52
Płeć: Kobieta
Lokalizacja: D-ce
Podziękował: 16 razy

Rozwiązanie nierówności

Post autor: astenna » 24 paź 2017, o 13:32

Cześć wszystkim!
Mam raczej dość prosty problem, co raczej sprzyja tylko mojemu zdenerwowaniu. Otóż:
wg wolframa i moich podstawień poprawnym rozwiązaniem nierówności:

\(\displaystyle{ \frac{-a-\sqrt{a^2-4a}}{a}<0}\)
jest \(\displaystyle{ a \ge 4}\)

Ja próbowałam rozwiązać to tak:
zamian na iloczyn:
\(\displaystyle{ a(-a-\sqrt{a^2-4a})<0}\)
Dziedzina: \(\displaystyle{ D=(- infty,0] cup [4,+ infty )}\)
\(\displaystyle{ \sqrt{a^2-4a}=-a}\)

Dla \(\displaystyle{ 0 \ge a}\)
obie strony równania są dodatnie, więc mogę podnieść do kwadratu obie z nich
\(\displaystyle{ a^2-4a=a^2}\)
i tutaj rozwiazaniem jest \(\displaystyle{ a=0}\)

Dla \(\displaystyle{ 4 \le a}\)
Jedna strona równania jest dodatnia, a druga ujemna - brak rozw.

Wynika stąd, że 0 jest podwójnym pierwiastkiem, więc (biorąc pod uwagę dziedzinę) rozwiązaniem nierówności jest \(\displaystyle{ a in (- infty ,0) cup [4,+ infty )}\)

Gdzie błąd?

florek177
Użytkownik
Użytkownik
Posty: 3015
Rejestracja: 23 mar 2005, o 10:26
Płeć: Mężczyzna
Lokalizacja: Gdynia
Podziękował: 1 raz
Pomógł: 322 razy

Re: Rozwiązanie nierówności

Post autor: florek177 » 24 paź 2017, o 14:02

Zauważ że wyjściowa postać nierówności zawiera w mianowniku \(\displaystyle{ \, a \,}\), które nie jest uwzględnione w dziedzinie.

astenna
Użytkownik
Użytkownik
Posty: 29
Rejestracja: 17 sty 2015, o 13:52
Płeć: Kobieta
Lokalizacja: D-ce
Podziękował: 16 razy

Rozwiązanie nierówności

Post autor: astenna » 24 paź 2017, o 14:06

W takim razie dziedzina to \(\displaystyle{ D=(- infty ,0) cup [4,+ infty )}\). W moim rozwiązaniu jednak to za dużo nie zmienia - coś nadal musi być nie tak.

Jan Kraszewski
Administrator
Administrator
Posty: 27286
Rejestracja: 20 mar 2006, o 21:54
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 1 raz
Pomógł: 4594 razy

Rozwiązanie nierówności

Post autor: Jan Kraszewski » 24 paź 2017, o 14:46

astenna pisze:\(\displaystyle{ a(-a-\sqrt{a^2-4a})<0}\)
Dziedzina: \(\displaystyle{ D=(- infty,0] cup [4,+ infty )}\)
\(\displaystyle{ \sqrt{a^2-4a}=-a}\)
Ale co to jest? Była nierówność, a tu nagle równanie.

Rozwiązujesz jakieś inne zadanie. Wystarczy istotnie sprawdzić dwa przypadki: \(\displaystyle{ a<0}\) i \(\displaystyle{ a\ge 4}\), ale w odniesieniu do nierówności, a nie do równania.

JK

janusz47
Użytkownik
Użytkownik
Posty: 6592
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 20 razy
Pomógł: 1426 razy

Rozwiązanie nierówności

Post autor: janusz47 » 24 paź 2017, o 15:04

Wolfram podał tylko jeden z przedziałów rozwiązań nierówności- przedział prawostronny \(\displaystyle{ a\geq 4}\)

Istnieje jeszcze jedno rozwiązanie - przedział lewostronny \(\displaystyle{ a <0.}\)

\(\displaystyle{ Assuming[a<0]}\)


Po uwagach florka 177 i Pana Kraszewskiego - dojdź do tych dwóch rozwiązań

astenna
Użytkownik
Użytkownik
Posty: 29
Rejestracja: 17 sty 2015, o 13:52
Płeć: Kobieta
Lokalizacja: D-ce
Podziękował: 16 razy

Rozwiązanie nierówności

Post autor: astenna » 24 paź 2017, o 15:23

Zamotałam sie w tych "uproszczeniach" rozwiązałam wszystko w nierównościach i jest dobrze.
Aż wstyd nie umieć takich podstaw!
Dziękuję!

ODPOWIEDZ