Wyznaczyć pierwiastki wielomianu, czy popełniłem błąd?.

Własności wielomianów; pierwiastki, współczynniki. Dzielenie wielomianów. Wzory Viete'a. RÓWNANIA I NIERÓWNOŚCI wielomianowe (wyższych stopni). Rozkład na czynniki.
Jakubb21
Użytkownik
Użytkownik
Posty: 25
Rejestracja: 1 cze 2017, o 13:26
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 17 razy

Wyznaczyć pierwiastki wielomianu, czy popełniłem błąd?.

Post autor: Jakubb21 » 22 paź 2017, o 18:13

Liczba \(\displaystyle{ 1-4j}\) jest pierwiastkiem wielomianu \(\displaystyle{ V(x)= x^{5} - 11x^{4}+ 60x^{3}-220x^{2}+459x-289}\) . Wyznaczyć pozostałe pierwiastki wielomianu.

Proszę o sprawdzenie i ewentualne naprostowanie moich obliczeń.

\(\displaystyle{ x_{1} = 1-4j}\), więc wiemy że \(\displaystyle{ x_{2} = 1+4j}\).
Później rozpisałem to tak: \(\displaystyle{ W(x)=(x- x_{1}) \cdot (x- x_{2} ) \cdot Q(x)}\)
Po podstawieniu za \(\displaystyle{ x_{1}}\) i \(\displaystyle{ x_{2}}\) do \(\displaystyle{ W(x)=(x- x_{1}) \cdot (x- x_{2} )}\) wyszło mi: \(\displaystyle{ W(x)=x^{2}-2x+16}\).
Teraz po podzieleniu tego przez nasz początkowy wielomian \(\displaystyle{ V(x)}\) wychodzi mi: \(\displaystyle{ x^{3}-9 x^{2} +26x-24}\) i dalej nie wiem jak wyliczyć z tego \(\displaystyle{ x_{3}}\) oraz \(\displaystyle{ x_{4}}\), ponieważ po uproszczeniu otrzymuje: \(\displaystyle{ x^{2} \cdot (x-9)+2 \cdot (13x-12)}\) .
Prosił bym o sprawdzenie moich obliczeń i ewentualną pomoc w dalszej części zadania.
Ostatnio zmieniony 22 paź 2017, o 23:12 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Symbol mnożenia to \cdot.

janusz47
Użytkownik
Użytkownik
Posty: 6592
Rejestracja: 18 mar 2009, o 16:24
Płeć: Mężczyzna
Podziękował: 20 razy
Pomógł: 1426 razy

Wyznaczyć pierwiastki wielomianu, czy popełniłem błąd?.

Post autor: janusz47 » 22 paź 2017, o 19:12

\(\displaystyle{ W_{1}(2) = 0.}\)

Twierdzenie Bezout: podzielenie przez dwumian \(\displaystyle{ (x-2).}\)
Ostatnio zmieniony 22 paź 2017, o 19:17 przez janusz47, łącznie zmieniany 1 raz.

Awatar użytkownika
kerajs
Użytkownik
Użytkownik
Posty: 7895
Rejestracja: 17 maja 2013, o 10:23
Płeć: Mężczyzna
Podziękował: 243 razy
Pomógł: 3093 razy

Wyznaczyć pierwiastki wielomianu, czy popełniłem błąd?.

Post autor: kerajs » 22 paź 2017, o 19:17

Jakubb21 pisze: Po podstawieniu za \(\displaystyle{ x_{1}}\) i \(\displaystyle{ x_{2}}\) do \(\displaystyle{ W(x)=(x- x_{1}) \cdot (x- x_{2} )}\) wyszło mi: \(\displaystyle{ W(x)=x^{2}-2x+16}\).
Teraz po podzieleniu tego przez nasz początkowy wielomian \(\displaystyle{ V(x)}\) wychodzi mi: \(\displaystyle{ x^{3}-9 x^{2} +26x-24}\)
Mnie wychodzi:
\(\displaystyle{ W(x)=(x-(1-4j))(x-(1+4j))=x^2-2x+17\\ V(x)= x^{5} - 11x^{4}+ 60x^{3}-220x^{2}+459x-289=\\=(x^2-2x+17)(x^3-9x^2+25x-17)=(x^2-2x+17)(x-1)(x^2-8x+17)=\\=(x^2-2x+17)(x^3-9x^2+25x-17)=(x^2-2x+17)(x-1)((x-4)^2+1)=\\=(x-1+4j))(x-1-4j)(x-1)(x-4+j)(x-4-j)}\)
Ostatnio zmieniony 22 paź 2017, o 23:14 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Błąd tagowania. Poprawa wiadomości.

nearless
Użytkownik
Użytkownik
Posty: 16
Rejestracja: 16 paź 2017, o 17:34
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 4 razy

Wyznaczyć pierwiastki wielomianu, czy popełniłem błąd?.

Post autor: nearless » 22 paź 2017, o 19:18

\(\displaystyle{ x^{3}-9x^{2}+26x-24}\) Możesz tutaj również zastosować twierdzenie o pierwiastkach całkowitych i wymiernych wielomianu. Podpowiem, że po podstawieniu za \(\displaystyle{ 2}\) wielomian daje \(\displaystyle{ 0}\) czyli dzielisz to przez \(\displaystyle{ x-2}\). Delta i miejsca zerowe.

Edit. obliczeń nie sprawdzałem.

Jakubb21
Użytkownik
Użytkownik
Posty: 25
Rejestracja: 1 cze 2017, o 13:26
Płeć: Mężczyzna
Lokalizacja: Polska
Podziękował: 17 razy

Wyznaczyć pierwiastki wielomianu, czy popełniłem błąd?.

Post autor: Jakubb21 » 22 paź 2017, o 19:42

Już wiem gdzie się pomyliłem. Przy liczeniu \(\displaystyle{ W(x)}\) nie dodałem \(\displaystyle{ 1}\) i zamiast \(\displaystyle{ 16}\) jest \(\displaystyle{ 17}\). Teraz wszystko jest już ok. Dziękuje kerajs

ODPOWIEDZ