Iloczyn skalarny wektorów

Obiekty i przekształcenia geometryczne, opisane za pomocą układu (nie zawsze prostokątnego) współrzędnych.
Awatar użytkownika
Sokół
Użytkownik
Użytkownik
Posty: 451
Rejestracja: 17 wrz 2006, o 19:22
Płeć: Mężczyzna
Lokalizacja: Zielona Góra
Podziękował: 15 razy
Pomógł: 55 razy

Iloczyn skalarny wektorów

Post autor: Sokół » 22 wrz 2007, o 21:45

Korzystając z rysunku

udowodnij, że jeśli \(\displaystyle{ \vec{c}=\vec{a}+\vec{b}}\), to
\(\displaystyle{ c^{2}=a^{2}+b^{2}+2ab \cos }\)

jak to ugryźć? Dopiero niedawno zaczęliśmy wektory, jak na razie to umiem dodawać wektory i wiem co to jest iloczyn skalarny. Jak rozwiązać to zadanie KORZYSTAJĄC z rysunku? Mam zmierzyć długość \(\displaystyle{ \vec{c}}\) podnieść ją do kwadratu, a następnie porównać z wyrażeniem \(\displaystyle{ a^{2}+b^{2}+2ab \cos }\), gdzie długości wektorów mierzę linijką, a cosinus kąta alfa wyznaczam na podstawie tablic (zmierzywszy kątomierzem kat alfa)?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
bolo
Gość Specjalny
Gość Specjalny
Posty: 2470
Rejestracja: 2 lis 2004, o 08:28
Płeć: Mężczyzna
Lokalizacja: BW
Podziękował: 8 razy
Pomógł: 191 razy

Iloczyn skalarny wektorów

Post autor: bolo » 22 wrz 2007, o 22:53

Po pierwsze, po wykonaniu rysunku linijkę należy usunąć z zasięgu wzroku i rąk.

Po drugie, zauważ, że tamten "prawy bok" też ma długość \(\displaystyle{ a}\). Kąt rozwarty ma miarę \(\displaystyle{ \pi-\alpha}\). Korzystając z twierdzenia cosinusów mamy: \(\displaystyle{ |\vec{c}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}-2|\vec{a}||\vec{b}|\cos{(\pi-\alpha)}=|\vec{a}|^{2}+|\vec{b}|^{2}+2|\vec{a}||\vec{b}|\cos{\alpha}.}\)

ODPOWIEDZ