oblicz tg kata

Własności funkcji trygonometrycznych i cyklometrycznych. Tożsamości. RÓWNANIA I NIERÓWNOŚCI.
magnolia17
Użytkownik
Użytkownik
Posty: 54
Rejestracja: 26 lis 2006, o 18:00
Płeć: Kobieta
Lokalizacja: Wielkopolska

oblicz tg kata

Post autor: magnolia17 » 22 wrz 2007, o 20:10

W graniastosłupie prawidłowym trójkatnym pole powierzchni bocznej równa sie sumie pól obu podstaw. Oblicz tg kata nachylenia przekatnej sciany bocznej do sasiedniej sciany bocznej.

florek177
Użytkownik
Użytkownik
Posty: 3015
Rejestracja: 23 mar 2005, o 10:26
Płeć: Mężczyzna
Lokalizacja: Gdynia
Podziękował: 1 raz
Pomógł: 322 razy

oblicz tg kata

Post autor: florek177 » 22 wrz 2007, o 21:06

1. Zrób rysunek, zaznacz przekątną ściany, dalej zaznacz wysokość podstawy i spodek wysokości połącz z wierzchołkiem. Otrzymasz trójkąt prostokątny z kątem prostym przy podstawie graniastosłupa. Kąt przy wierzchołku ( górnym ) jest kątem, którego szukamy.

Oznaczamy: a - krawędź podstawy; h - wysokość podstawy; H - wysokość graniastosłupa; c - przyprostokątna na ścianie bocznej. Przekątna ściany bocznej jest przeciwprostokątną trójkąta.

Pola podstaw = suma pól dwóch trójkątów równobocznych: \(\displaystyle{ P_{p} = \frac{a^{2} \sqrt{3}}{2}}\)

Pole pow. bocznej: \(\displaystyle{ P_{b} = 3 \cdot a \cdot H}\)

Z przyrównania pól mamy: \(\displaystyle{ 6 \cdot H = \sqrt{3} \cdot a}\) --> wyznacz \(\displaystyle{ H^{2}}\)

szukany tangens to: \(\displaystyle{ tg{\alpha} = \frac{h}{c} \,\,\}\) ; gdzie \(\displaystyle{ c = \sqrt{H^{2} + (\frac{a}{2})^{2}} \,\,\}\) ; a \(\displaystyle{ h = \frac{\sqrt{3} a}{2}}\)

Wstaw do wzoru i po sprawie. mnie wyszło - (3/2) ale sprawdź obliczenia.

ODPOWIEDZ