rozwiązywanie wielomianów

Własności wielomianów; pierwiastki, współczynniki. Dzielenie wielomianów. Wzory Viete'a. RÓWNANIA I NIERÓWNOŚCI wielomianowe (wyższych stopni). Rozkład na czynniki.
magdaaa1998
Użytkownik
Użytkownik
Posty: 70
Rejestracja: 16 paź 2017, o 19:02
Płeć: Kobieta
Lokalizacja: warszawa
Podziękował: 8 razy

rozwiązywanie wielomianów

Post autor: magdaaa1998 » 16 paź 2017, o 19:10

cześć !
prosiłabym o pomoc w zrozumieniu rozwiązywania wielomianów... kompletnie nie rozumiem jak to się robi...
jako przykład podaje:
\(\displaystyle{ x^5 - x^4 -8x^3 + 8x^2 +16x - 16<0}\)
Chciałabym się dowiedzieć jak to po kolei rozwiązywać...
z góry dziękuję !
Ostatnio zmieniony 16 paź 2017, o 22:13 przez Jan Kraszewski, łącznie zmieniany 1 raz.
Powód: Nieczytelny zapis - brak LaTeX-a. Proszę zapoznaj się z instrukcją: http://matematyka.pl/latex.htm .

a4karo
Użytkownik
Użytkownik
Posty: 19221
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 6 razy
Pomógł: 3247 razy

rozwiązywanie wielomianów

Post autor: a4karo » 16 paź 2017, o 19:20

Wyznaczasz pierwiastki, rozkładasz na iloczyn czynników liniowych i kwadratowych. Kwadratowe maja stały znak, więc nie wpływają na nierówność. Dla liniowych rysujesz "żmijkę".

jeśli nie wiesz o czym piszę, to zacznij od pierwszego kroku: wyznacz pierwiastki

I używaj \(\displaystyle{ \LaTeX{a}}\)

magdaaa1998
Użytkownik
Użytkownik
Posty: 70
Rejestracja: 16 paź 2017, o 19:02
Płeć: Kobieta
Lokalizacja: warszawa
Podziękował: 8 razy

rozwiązywanie wielomianów

Post autor: magdaaa1998 » 16 paź 2017, o 19:30

jak mam to rozłożyć na iloczyn czynników liniowych i kwadratowych? pierwiastkami, będą liczby, które są dzielnikami 16?

a4karo
Użytkownik
Użytkownik
Posty: 19221
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 6 razy
Pomógł: 3247 razy

rozwiązywanie wielomianów

Post autor: a4karo » 16 paź 2017, o 19:32

Nie wiem tego (bo nie liczyłem). Ale jeżeli ten wielomian ma pierwiastki wymierne, to sa one całkowite i są dzielnikami \(\displaystyle{ 16}\)-- 16 paź 2017, o 19:35 --A może sprobujesz pogrupować wyrazy? narzuca sie wzięcie osubno wyrazów z parzystymi potęgami i z nieparzystymi.

nearless
Użytkownik
Użytkownik
Posty: 16
Rejestracja: 16 paź 2017, o 17:34
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 4 razy

rozwiązywanie wielomianów

Post autor: nearless » 16 paź 2017, o 19:50

\(\displaystyle{ x^{5} - x^{4} - 8x^{3} + 8x^{2} + 16x - 16 < 0}\)
Np twierdzenie o pierwiastkach całkowitych i wymiernych wielomianu;
Znajdujesz dzielniki wyrazu wolnego w tym wypadku \(\displaystyle{ 16}\) i iksa przy najwyższej potędze; w tym wypadku jest to 1.
Podstawiasz za iksa
\(\displaystyle{ w(1) = 1-1-8+8+16-16 = 0}\)
Dzielisz wielomian początkowy przez \(\displaystyle{ x-1}\)
Po dzieleniu wychodzi \(\displaystyle{ x^{4} - 8x^{2} + 16}\)
Podstaw \(\displaystyle{ t = x^{2}}\)
Obliczasz deltę i miejsca zerowe.

Awatar użytkownika
Rafsaf
Użytkownik
Użytkownik
Posty: 466
Rejestracja: 19 lut 2017, o 11:04
Płeć: Mężczyzna
Lokalizacja: Podkarpacie/Wrocław
Podziękował: 54 razy
Pomógł: 80 razy

rozwiązywanie wielomianów

Post autor: Rafsaf » 16 paź 2017, o 20:12

Można korzystać z przytoczonego wyżej twierdzenia, ale szybciej po prostu policzyć w pamięci, "strzelić" miejsce zerowe, przeważnie w takich zadaniach to liczby całkowite

Potem jak już wielomian przedstawisz w postaci iloczynowej, pod linkiem https://www.matematyka.pl/page.php?p=ko ... elomianowe

poczytaj na samym końcu hasło: Nierówności wielomianowe
jak nic Ci to nie pomoże to napisz tu

a4karo
Użytkownik
Użytkownik
Posty: 19221
Rejestracja: 15 maja 2011, o 20:55
Płeć: Mężczyzna
Lokalizacja: Bydgoszcz
Podziękował: 6 razy
Pomógł: 3247 razy

rozwiązywanie wielomianów

Post autor: a4karo » 16 paź 2017, o 21:33

\(\displaystyle{ x^{5} - x^{4} - 8x^{3} + 8x^{2} + 16x - 16 =x^{5} - 8x^{3}+ 16x-( x^{4} - 8x^{2} +16)\\ =x( x^{4} - 8x^{2} +16)-( x^{4} - 8x^{2} +16)=(x-1)( x^{4} - 8x^{2} +16)\\ =(x-1)(x^2-4)^2=(x-1)(x-2)^2(x+2)^2}\)

ODPOWIEDZ