Poprowadzić prostą przez trzy proste skośne

Dział poświęcony konstrukcjom platońskim i nie tylko...
AceOfMagnifiers
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 13 paź 2017, o 10:48
Płeć: Kobieta
Lokalizacja: Białystok
Podziękował: 3 razy

Poprowadzić prostą przez trzy proste skośne

Post autor: AceOfMagnifiers » 13 paź 2017, o 11:00

Poprowadzić prostą przecinającą trzy proste skośne r, s, t, których rzuty Monge'a są podane poniżej:
[img]http://wstaw.org/m/2017/10/13/20171012_151302_jpg_300x300_q85.jpg[/img]

SlotaWoj
Moderator
Moderator
Posty: 4211
Rejestracja: 25 maja 2012, o 21:33
Płeć: Mężczyzna
Lokalizacja: Kraków PL
Podziękował: 2 razy
Pomógł: 757 razy

Poprowadzić prostą przez trzy proste skośne

Post autor: SlotaWoj » 15 paź 2017, o 12:53

Na prostej \(\displaystyle{ r}\) należy wybrać dowolny punkt \(\displaystyle{ R}\) i wyznaczyć płaszczyznę \(\displaystyle{ \alpha}\) przechodzącą przez ten punkt i prostą \(\displaystyle{ s.}\) Jeżeli prosta \(\displaystyle{ t}\) jest równoległa do płaszczyzny \(\displaystyle{ \alpha,}\) to na prostej \(\displaystyle{ r}\) należy wybrać nowy punkt \(\displaystyle{ R}\) i powtórzyć wyznaczanie płaszczyzny \(\displaystyle{ \alpha,}\) Jeżeli \(\displaystyle{ t}\) nie jest równoległa do płaszczyzny \(\displaystyle{ \alpha,}\) to ją przebija w punkcie \(\displaystyle{ T}\). Jeżeli prosta \(\displaystyle{ RT}\) jest równoległa do prostej \(\displaystyle{ s,}\) to na prostej \(\displaystyle{ r}\) należy wybrać inny punkt \(\displaystyle{ R}\), różny od poprzednich i operacje powtórzyć. Jeżeli prosta \(\displaystyle{ RT}\) nie jest równoległa do prostej \(\displaystyle{ s,}\) to ją przecina w punkcie \(\displaystyle{ S.}\)

Kolejność przetwarzanych prostych można zmieniać.

Edit:

Poniżej Kruszewski przedstawił lepszy, bo bardziej zwięzły sposób rozwiązania tego zadania.
Ostatnio zmieniony 16 paź 2017, o 09:50 przez SlotaWoj, łącznie zmieniany 1 raz.

kruszewski
Użytkownik
Użytkownik
Posty: 6758
Rejestracja: 7 gru 2010, o 16:50
Płeć: Mężczyzna
Lokalizacja: Staszów
Podziękował: 44 razy
Pomógł: 1096 razy

Re: Poprowadzić prostą przez trzy proste skośne

Post autor: kruszewski » 16 paź 2017, o 08:33







Niech prosta \(\displaystyle{ r}\) przynależy do dowolnej płaszczyzny \(\displaystyle{ \rho}\) której ślady wyznaczamy mając rzuty prostej \(\displaystyle{ r}\).
Niech punkty \(\displaystyle{ S \ i \ T}\) będą punktami przebicia płaszczyzny \(\displaystyle{ \rho}\) prostymi \(\displaystyle{ s \ i \ t}\) wtedy prosta dana tymi punktami przynależy do płaszczyzny \(\displaystyle{ \rho}\) i jeżeli nie jest równoległa prostej \(\displaystyle{ r}\) ma punkt wspólny z prostą \(\displaystyle{ \rho}\) i jest tą poszukiwaną.
Konstrukcję punktów przebicie płaszczyzny prostą można prześledzić tu:
http://fluid.itcmp.pwr.wroc.pl/~eichler ... kt_03.html

ODPOWIEDZ