Przekształcenie wzoru

Proste problemy dotyczące wzorów skróconego mnożenia, ułamków, proporcji oraz innych przekształceń.
Cesar
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 20 wrz 2007, o 17:24
Płeć: Mężczyzna
Lokalizacja: Kraków

Przekształcenie wzoru

Post autor: Cesar » 20 wrz 2007, o 17:34

Mam z tego wzoru wyliczyć H. Proszę o pomoc, po prau prostych przekształceniach nie mogę nic wymyślić.

\(\displaystyle{ v=\frac{H}{\sqrt{\frac{2H}{g}}} - \frac{g}{2}( \sqrt{\frac{2H}{g}}-\Delta t)}\)

_________________
Temat poprawiony
"[:" - ozdobnik?
bolo
Ostatnio zmieniony 20 wrz 2007, o 18:57 przez Cesar, łącznie zmieniany 1 raz.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

jaktk
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 20 wrz 2007, o 17:04
Płeć: Mężczyzna
Lokalizacja: Warszawa

Przekształcenie wzoru

Post autor: jaktk » 20 wrz 2007, o 17:57

poprawcie mnie, jeśli się mylę, ale wydaje mi się, że \(\displaystyle{ H=\frac{(g \Delta t-2v)^{2}}{g}}\)

Cesar
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 20 wrz 2007, o 17:24
Płeć: Mężczyzna
Lokalizacja: Kraków

Przekształcenie wzoru

Post autor: Cesar » 20 wrz 2007, o 18:12

A mógłbym poprosić o kolejne przekształcenia? Zależy mi na tym, żeby zobaczyć co się tam dzieje.

Kris-0
Użytkownik
Użytkownik
Posty: 399
Rejestracja: 24 gru 2006, o 11:16
Płeć: Mężczyzna
Podziękował: 28 razy
Pomógł: 82 razy

Przekształcenie wzoru

Post autor: Kris-0 » 22 wrz 2007, o 15:30

\(\displaystyle{ v=\frac{2H}{\sqrt{\frac{2H}{g}}}-\sqrt{\frac{2Hg^2}{4g}}+\frac{g\Delta t}{2} \\ v-\frac{g\Delta t}{2}=\frac{H\sqrt{\frac{2H}{g}}}{\frac{2H}{g}}-\sqrt{\frac{Hg}{2}} \\v-\frac{g\Delta t}{2}=\frac{g\sqrt{\frac{2H}{g}}}{2}-\sqrt{\frac{Hg}{2}} \\ \frac{1}{4}(2v-g\Delta t)^2= ft ( \frac{\sqrt{2Hg}}{2}-\sqrt{\frac{Hg}{2}} \right )^2 \\ \frac{1}{4}(2v-g\Delta t)^2=\frac{2Hg}{4} + \frac{Hg}{2}-\left ( \sqrt{2Hg\cdot \frac{Hg}{2}} \right ) \\ \frac{1}{4}(2v-g\Delta t)^2 =0}\)
Chyba, że coś jest nie tak u mnie

ODPOWIEDZ