zbadać zbeżność całek

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
legacy85
Użytkownik
Użytkownik
Posty: 3
Rejestracja: 18 wrz 2007, o 14:49
Płeć: Mężczyzna
Lokalizacja: Kraków

zbadać zbeżność całek

Post autor: legacy85 » 20 wrz 2007, o 15:42

Do zbadania mam dwie całki:

\(\displaystyle{ \int\limits_{0}^{\infty}\frac{xdx}{x^{3}+3x+1}}\)

a druga to:

\(\displaystyle{ \int\limits_{0}^{\frac{\pi}{2}}\sqrt{\tan {x}}dx}\)

nie obliczając tych całek.
Jak się do tego zabrać.?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
qaz
Użytkownik
Użytkownik
Posty: 486
Rejestracja: 28 paź 2006, o 21:56
Płeć: Kobieta
Lokalizacja: Gobbos' Kingdom
Podziękował: 311 razy
Pomógł: 5 razy

zbadać zbeżność całek

Post autor: qaz » 21 wrz 2007, o 22:29

Jedyne co przychodzi mi na myśl to następujące: z tego co pamietam, to jest takie twierdzenie, że przy spełnieniu odpowiednich warunków przez funkcję podcałkową (jeden z nich to chyba ten, że jest malejąca, ale tu nie mam pewności), można ją traktować jako szereg, z grubsza na zasadzie:
\(\displaystyle{ \int\limits_{0}^{\infty} f(x) ~ \sum_{n_0}^{\infty} f(n)}\)
to jest w sumie scislej okreslony przyklad, ale to jest bardzo intuicyjnie, po prostu jaka calka, taki szereg...
no i wtedy nie obliczasz całki, tylko sprawdzasz zbieżność szeregu i to często przez oszacowanie z góry czy też zdołu na zasadzie podejrzenia zbieżności czy tez niezbieżności...
Może znasz to twierdzenie w pełnym brzmieniu to bym prosila o napisanie.
PS jeżeli sie nie myle oczywiscie co do wszystkiego

ODPOWIEDZ