Porządkowanie zbioru.

Permutacje. Kombinacje. Wariacje. Rozmieszczanie kul w urnach. Silnie i symbole Newtona. Przeliczanie zbiorów. Funkcje tworzące. Teoria grafów.
Łukasz_1989
Użytkownik
Użytkownik
Posty: 64
Rejestracja: 31 sie 2007, o 16:13
Płeć: Mężczyzna
Lokalizacja: Mazowsze
Podziękował: 8 razy

Porządkowanie zbioru.

Post autor: Łukasz_1989 » 19 wrz 2007, o 20:42

Na ile sposobów można uporządkować zbiór {1,2,3,4,5,6,7,8}, aby:
a) liczby 1 i 2 znajdowały się obok siebie,
b) pomiędzy liczbami 1 i 2 znajdowały się dokładnie dwie liczby,
c) pomiędzy liczbami 1 i 2 znajdowały się dokładnie trzy liczby,
d) liczby 1, 2 i 3 znajdowały się obok siebie?

Prosiłbym o zrobienie zadania i wyjaśnienie każdego podpunktu. Jedyne co udało mi się zrobić to podpunkt a) i nawet tego nie jestem pewien (pewnie źle). Wyszło mi: 518400 możliwości i c) - 14400 możliwości.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

sigma_algebra1
Użytkownik
Użytkownik
Posty: 384
Rejestracja: 3 maja 2007, o 22:44
Płeć: Kobieta
Lokalizacja: Wrocław
Pomógł: 92 razy

Porządkowanie zbioru.

Post autor: sigma_algebra1 » 19 wrz 2007, o 21:28

ad 1
\(\displaystyle{ 2 7!}\)

ad 2

\(\displaystyle{ 2 {6\choose 2}\cdot 2 5!}\)

ad 3

\(\displaystyle{ 2 {6\choose 3} 3! 4!}\)

ad 4

\(\displaystyle{ 3! 6!}\)

Łukasz_1989
Użytkownik
Użytkownik
Posty: 64
Rejestracja: 31 sie 2007, o 16:13
Płeć: Mężczyzna
Lokalizacja: Mazowsze
Podziękował: 8 razy

Porządkowanie zbioru.

Post autor: Łukasz_1989 » 19 wrz 2007, o 22:19

sigma_algebra1 pisze:ad 1
\(\displaystyle{ 2 7!}\)

ad 2

\(\displaystyle{ 2 {6\choose 2}\cdot 2 5!}\)

ad 3

\(\displaystyle{ 2 {6\choose 3} 3! 4!}\)

ad 4

\(\displaystyle{ 3! 6!}\)
A mogłabyś mi jeszcze wytłumaczyć każdy podpunkt?

sigma_algebra1
Użytkownik
Użytkownik
Posty: 384
Rejestracja: 3 maja 2007, o 22:44
Płeć: Kobieta
Lokalizacja: Wrocław
Pomógł: 92 razy

Porządkowanie zbioru.

Post autor: sigma_algebra1 » 19 wrz 2007, o 22:56

ad 1.
1 i 2 można uporządkować na 2 sposoby, 1 i 2 traktujemy jako "całość" wtedy zostaje jeszcze 6 liczb czyli razem 7 elementów do uporządkowania na 7! sposobów. I reguła mnożenia

ad 2.

Znowu 1 i 2 porządkujemy na dwa sposoby, dwie liczby pomiędzy wybieramy na 6 nad 2 sposobów, porządkujemy je na 2 sposoby, te 4 liczby traktujemy jako 1 element, pozostają 4 liczby, czyli razem 5 elementów do uporządkowania na 5! sposobów. I reguła mnożenia.

ad 3.

Znowu 1 i 2 porządkujemy na dwa sposoby, trzy liczby pomiędzy wybieramy na 6 nad 3 sposobów, porządkujemy je na 3! sposoby, te 5 liczby traktujemy jako 1 element, pozostają 3 liczby, czyli razem 4 elementy do uporządkowania na 4! sposobów. I reguła mnożenia.

ad 4.

1,2,3, porządkujemy na 3! sposobów. traktujemy je jako 1 element. Pozostaje 5 liczb, czyli razem 6 elementów do uporządkowania na 6! sposobów. I reguła mnożenia

ODPOWIEDZ