Wartość parametru i rzut wektora

Obiekty i przekształcenia geometryczne, opisane za pomocą układu (nie zawsze prostokątnego) współrzędnych.
mała193
Użytkownik
Użytkownik
Posty: 237
Rejestracja: 3 sty 2007, o 14:30
Płeć: Kobieta
Lokalizacja: Warszawa
Podziękował: 63 razy

Wartość parametru i rzut wektora

Post autor: mała193 » 17 wrz 2007, o 21:42

Zadanie 1
Dla jakiej wartości parametru \(\displaystyle{ \lambda}\) wektory
\(\displaystyle{ \vec{a}=3\vec{p}+\lambda\vec{q}}\) oraz
\(\displaystyle{ \vec{b}=-\vec{p}+2\vec{q}}\) są wzajemnie prostopadłe, jeżeli wiadomo, że
\(\displaystyle{ |\vec{p}|=5,|\vec{q}|=3}\) oraz \(\displaystyle{ (\vec{p},\vec{q})=\frac{\pi}{3}}\).

Zadanie2
Znaleźć rzut wektora \(\displaystyle{ \vec{a}}\) na oś o kierunku wektora \(\displaystyle{ \vec{b}}\), jeżeli wiadomo że \(\displaystyle{ \vec{a}=5, \vec{b}=3}\) oraz \(\displaystyle{ (\vec{a},\vec{b})=\frac{\pi}{3}}\).
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
scyth
Gość Specjalny
Gość Specjalny
Posty: 6392
Rejestracja: 23 lip 2007, o 15:26
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy
Pomógł: 1087 razy

Wartość parametru i rzut wektora

Post autor: scyth » 18 wrz 2007, o 08:01

1. Należy wykorzystać wzór na iloczyn skalarny wektorów:
\(\displaystyle{ \vec{x}\cdot\vec{y} = |\vec{x}|\cdot|\vec{y}|\cdot\cos{\alpha}}\)

\(\displaystyle{ \vec{a}\cdot\vec{b}=(3\vec{p}+\lambda\vec{q})\cdot(-\vec{p}+2\vec{q})= -3|\vec{p}|^2+6\vec{p}\cdot\vec{q}-\lambda\vec{p}\cdot\vec{q}+2\lambda|\vec{q}|^2=
\\ = -3\cdot5^2+6\cdot5\cdot3\cdot\frac{1}{2}-\lambda\cdot5\cdot3\cdot\frac{1}{2}+2\lambda\cdot3^2 = -75+45-\frac{15}{2}\lambda+18\lambda=\frac{21\lambda}{2}-30}\)


Ponieważ \(\displaystyle{ \vec{a}}\) i \(\displaystyle{ \vec{b}}\) są prostopadłe, to \(\displaystyle{ \vec{a}\cdot\vec{b}=0}\), czyli:
\(\displaystyle{ \frac{21\lambda}{2}-30=0 \lambda=\frac{20}{7}}\)

2. Rzutem wektora \(\displaystyle{ \vec{x}}\) na wektor \(\displaystyle{ \vec{y}}\) jest \(\displaystyle{ \vec{x_y}=\vec{x}\cos\alpha}\).

Zatem:
\(\displaystyle{ \vec{a_b}=\vec{a}\cos\frac{\pi}{3}=5\cdot\frac{1}{2}=\frac{5}{2}}\)

mała193
Użytkownik
Użytkownik
Posty: 237
Rejestracja: 3 sty 2007, o 14:30
Płeć: Kobieta
Lokalizacja: Warszawa
Podziękował: 63 razy

Wartość parametru i rzut wektora

Post autor: mała193 » 18 wrz 2007, o 18:37

Skąd sie biorą te wzory na rzut wektora ???

Awatar użytkownika
scyth
Gość Specjalny
Gość Specjalny
Posty: 6392
Rejestracja: 23 lip 2007, o 15:26
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy
Pomógł: 1087 razy

Wartość parametru i rzut wektora

Post autor: scyth » 19 wrz 2007, o 00:18

mała193 pisze:Skąd sie biorą te wzory na rzut wektora ???
Z obrazka
Mamy trójkąt prostokątny o przeciwprostokątej \(\displaystyle{ \vec{x}}\) i przyprostokątnej \(\displaystyle{ \vec{x_y}}\) - ta przyprostokątna to wektor równoległy do wektora \(\displaystyle{ \vec{y}}\), zatem kąt między tą przyprostokątną i przeciwprostokątną jest taki, jak pomiędzy dwoma wektorami \(\displaystyle{ \vec{x}}\) i \(\displaystyle{ \vec{y}}\).

Naprawdę polecam narysowanie obrazka.

ODPOWIEDZ