wyznacz an

Dział przeznaczony przede wszystkim dla licealistów. Róznica i iloraz ciągu. Suma ciągu arytemtycznego oraz geometrycznego.
katarzynkaaa90
Użytkownik
Użytkownik
Posty: 5
Rejestracja: 14 wrz 2007, o 17:26
Płeć: Kobieta
Lokalizacja: warszawa

wyznacz an

Post autor: katarzynkaaa90 » 17 wrz 2007, o 12:25

Suma n poczatkowych kolejnych wyrazow ciagu \(\displaystyle{ (a_{n})}\) jest obliczana wedlug wzoru
\(\displaystyle{ S_{n}=n^2+3n}\) ,\(\displaystyle{ n \mathbb{N}}\). Wyznacz \(\displaystyle{ a_{n}}\). Wykaz, ze ciąg \(\displaystyle{ (a_{n})}\) jest ciagiem arytmetycznym.
Ostatnio zmieniony 17 wrz 2007, o 13:03 przez katarzynkaaa90, łącznie zmieniany 1 raz.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Tristan
Gość Specjalny
Gość Specjalny
Posty: 2357
Rejestracja: 24 kwie 2005, o 14:28
Płeć: Mężczyzna
Podziękował: 27 razy
Pomógł: 556 razy

wyznacz an

Post autor: Tristan » 17 wrz 2007, o 13:08

Zauważ, że \(\displaystyle{ S_{1}=a_{1}=1+3=4}\). Ponadto \(\displaystyle{ S_{n}=a_{1}+a_{2}+... +a_{n-1}+a_{n}}\) i \(\displaystyle{ S_{n-1}=a_{1}+a_{2} +...+a_{n-1}}\), dla \(\displaystyle{ n>2}\). Czyli \(\displaystyle{ S_{n}-S_{n-1}=a_{n}}\). Stąd już podstawiając otrzymujesz, że:
\(\displaystyle{ a_{n}=n^2 +3n - (n-1)^2 -3(n-1)=n^2 +3n -n^2 +2n-1-3n+3=2n+2}\)
Różnica \(\displaystyle{ a_{n+1} - a_{n}=2(n+1)+2 - 2n-2=2n+4-2n-2=2}\) jest stała, więc dany ciąg jest arytmetyczny.

ODPOWIEDZ