Kilka zadań na przekształcanie wyrażeń

Podzielność. Reszty z dzielenia. Kongruencje. Systemy pozycyjne. Równania diofantyczne. Liczby pierwsze i względnie pierwsze. NWW i NWD.
adamk
Użytkownik
Użytkownik
Posty: 15
Rejestracja: 9 wrz 2007, o 19:26
Płeć: Mężczyzna
Podziękował: 6 razy

Kilka zadań na przekształcanie wyrażeń

Post autor: adamk » 16 wrz 2007, o 13:15

1. Wiadomo, że \(\displaystyle{ x+\frac{1}{x}=3}\). Oblicz \(\displaystyle{ x^{4}+\frac{1}{x^{4}}}\).
2. Wiadomo, że \(\displaystyle{ x-\frac{1}{x}=2}\). Oblicz \(\displaystyle{ x^{3}+\frac{1}{x^{3}}}\).
3. Wiadomo, że \(\displaystyle{ \frac{a+2b}{a-2b}=7}\). Oblicz \(\displaystyle{ \frac{a+3b}{a-3b}}\).
4. Wiadomo, że \(\displaystyle{ a+b+c=0}\). Wykaż, że \(\displaystyle{ a^{4}+b^{4}+c^{4}=2(a^{2}b^{2}+b^{2}c^{2}+c^{2}a^{2})}\).
5. Wykaż, że dla dodatnich a,b,c zachodzi \(\displaystyle{ (a+b)(b+c)(c+a) qslant 8abc}\).
6. Wykaż, że dla dodatnich a,b,c zachodzi \(\displaystyle{ \frac{a^{2}}{b} +\frac{b^{2}}{a} qslant a +b}\).
7. Znajdź najmniejszą wartość wyrażenia \(\displaystyle{ a^{2} + b^{2}}\) jeżeli \(\displaystyle{ a+b=4}\).



Z góry dziękuje za jakąkolwiek pomoc
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
mol_ksiazkowy
Użytkownik
Użytkownik
Posty: 6507
Rejestracja: 9 maja 2006, o 12:35
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 2587 razy
Pomógł: 683 razy

Kilka zadań na przekształcanie wyrażeń

Post autor: mol_ksiazkowy » 16 wrz 2007, o 13:24

ad 4 \(\displaystyle{ a+b \geq 2\sqrt{ab}}\)
\(\displaystyle{ a+c \geq 2\sqrt{ac}}\)
\(\displaystyle{ b+c \geq 2\sqrt{bc}}\)
bo SA> AG i wymnozyc

ad 1 i 2 własnie było
dział przekształcenia
algebraiczne, temat : uwikłąnie


[ Dodano: 16 Września 2007, 14:35 ]
ad 6
\(\displaystyle{ \frac{a^2}{b} + \frac{b^2}{a} -(a+b) = \frac{(a-b)^2 (a+b)}{ab} q 0}\)

[ Dodano: 16 Września 2007, 14:37 ]
ad 3
\(\displaystyle{ \frac{a}{b}=x}\) , tj \(\displaystyle{ \frac{x+2}{x-2}=7}\)
etc

Awatar użytkownika
PFloyd
Gość Specjalny
Gość Specjalny
Posty: 620
Rejestracja: 9 paź 2006, o 20:20
Płeć: Mężczyzna
Lokalizacja: Kęty
Podziękował: 16 razy
Pomógł: 122 razy

Kilka zadań na przekształcanie wyrażeń

Post autor: PFloyd » 16 wrz 2007, o 15:02

7:
\(\displaystyle{ a^2+b^2=16-2ab=16-2a(4-a)}\) i znajdujesz najmniejszą wartość funkcji f(a)

5:
tak jak mol_ksiazkowy opisał zadanie 4.

Awatar użytkownika
mol_ksiazkowy
Użytkownik
Użytkownik
Posty: 6507
Rejestracja: 9 maja 2006, o 12:35
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 2587 razy
Pomógł: 683 razy

Kilka zadań na przekształcanie wyrażeń

Post autor: mol_ksiazkowy » 16 wrz 2007, o 16:05

ad 4 wsk
\(\displaystyle{ a^2b^2 +a^2c^2+b^2c^2 \\ = (ab+ac+bc)^2- 2abc(a+b+c)= \\ (ab+ac+bc)^2}\)

Awatar użytkownika
max
Gość Specjalny
Gość Specjalny
Posty: 3306
Rejestracja: 10 gru 2005, o 17:48
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 37 razy
Pomógł: 778 razy

Kilka zadań na przekształcanie wyrażeń

Post autor: max » 16 wrz 2007, o 18:30

7. Bez analizy:
\(\displaystyle{ \sqrt{\frac{a^{2} + b^{2}}{2}} qslant \frac{a + b}{2} = 2}\)
(przy czym równość wtw, gdy \(\displaystyle{ a = b}\))
dalej podnieść stronami do kwadratu i wymnożyć przez \(\displaystyle{ 2}\)

ODPOWIEDZ