Problem z pochodną

Różniczkowalność, pochodna funkcji. Przebieg zmienności. Zadania optymalizacyjne. Równania i nierówności z wykorzystaniem rachunku różniczkowego.
revell
Użytkownik
Użytkownik
Posty: 57
Rejestracja: 15 wrz 2007, o 15:06
Płeć: Mężczyzna
Lokalizacja: warszawa
Podziękował: 25 razy

Problem z pochodną

Post autor: revell » 15 wrz 2007, o 15:15

Wiedząc że \(\displaystyle{ y=x^{2lnx}}\) wykazać że \(\displaystyle{ \frac {dy}{dx}=xln(ex^{2})}\).
Jak to zrobic?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
max
Gość Specjalny
Gość Specjalny
Posty: 3306
Rejestracja: 10 gru 2005, o 17:48
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 37 razy
Pomógł: 778 razy

Problem z pochodną

Post autor: max » 15 wrz 2007, o 17:31

\(\displaystyle{ y = x^{2\ln x} = e^{2\ln^{2}x}\\
\frac{dy}{dx} = \frac{d}{dx}\left(e^{2\ln^{2}x}\right) =e^{2\ln^{2}x} \frac{d}{dx}\left(2\ln^{2}x\right) = x^{2\ln x}\cdot\frac{4\ln x}{x}}\)

czyli żądana równość nie jest tożsamością... (nie zachodzi np dla \(\displaystyle{ x = 1}\))

revell
Użytkownik
Użytkownik
Posty: 57
Rejestracja: 15 wrz 2007, o 15:06
Płeć: Mężczyzna
Lokalizacja: warszawa
Podziękował: 25 razy

Problem z pochodną

Post autor: revell » 15 wrz 2007, o 19:47

W sumie ok, tyle że jestem pewien że to zadanie ma rozwiązanie...

Awatar użytkownika
max
Gość Specjalny
Gość Specjalny
Posty: 3306
Rejestracja: 10 gru 2005, o 17:48
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 37 razy
Pomógł: 778 razy

Problem z pochodną

Post autor: max » 15 wrz 2007, o 20:44

Zależy co rozumiesz przez rozwiązanie...
Można też scałkować obie strony równości po \(\displaystyle{ x}\), wtedy dostaniemy:
\(\displaystyle{ y = t x\ln (ex^{2})\, dx \stackrel{t = x^{2}}{=}\frac{1}{2}\int \ln(et)\, dt =\\
= \frac{1}{2}\int (\ln t + 1)\, dt = \frac{t\ln t}{2} + C = x^{2}\ln x + C}\)

w związku z tym zastanawiam się, czy w treści zadania nie powinno być:
\(\displaystyle{ y = x^{2}\ln x}\)

revell
Użytkownik
Użytkownik
Posty: 57
Rejestracja: 15 wrz 2007, o 15:06
Płeć: Mężczyzna
Lokalizacja: warszawa
Podziękował: 25 razy

Problem z pochodną

Post autor: revell » 15 wrz 2007, o 23:49

Jasne, masz racje. Mogłem sam upewnić się w tą stronę...

ODPOWIEDZ