znaleźć promień zbieżności i funkcję określoną szere

Istnienie i ciągłość funkcji granicznej, jednostajna zbieżność. Zmiana kolejności przejścia granicznego. Różniczkowanie i całkowanie szeregów. Istnienie i zbieżność rozwinięć Taylora, Maclaurina, Fouriera itd.
mostostalek
Użytkownik
Użytkownik
Posty: 1384
Rejestracja: 26 lis 2006, o 21:34
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 33 razy
Pomógł: 268 razy

znaleźć promień zbieżności i funkcję określoną szere

Post autor: mostostalek » 12 wrz 2007, o 16:22

tak jak w temacie.. proszę o znalezienie promienia zbieżności szeregu:

\(\displaystyle{ \sum_{n=1}^{\infty} \frac{x^n}{n}}\)

i w przedziale jego zbieżności znaleźć funkcję określoną tym szeregiem..

z góry dzięki za wszelkie próby i rozwiązania

Awatar użytkownika
max
Gość Specjalny
Gość Specjalny
Posty: 3306
Rejestracja: 10 gru 2005, o 17:48
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 37 razy
Pomógł: 778 razy

znaleźć promień zbieżności i funkcję określoną szere

Post autor: max » 12 wrz 2007, o 16:43

Aby znaleźć promień zbieżności można obliczyć granicę:
\(\displaystyle{ \lim_{n\to }\sqrt[n]{\frac{1}{n}} = 1}\)
ponieważ jest ona skończona, to promień zbieżności równy jest jej odwrotności czyli:
\(\displaystyle{ R = 1}\)
Dla \(\displaystyle{ x = 1}\) dostajemy szereg harmoniczny rozbieżny, a dla \(\displaystyle{ x = -1}\) zbieżny warunkowo (tw Leibniza) szereg naprzemienny.
Aby znaleźć funkcję wyrażającą się przez sumę tego szeregu można go zróżniczkować korzystając z tw o różniczkowaniu szeregu potęgowego wyraz za wyrazem - otrzymamy szereg geometryczny o sumie \(\displaystyle{ \frac{1}{1 - x}}\), którą następnie całkujemy w przedziale \(\displaystyle{ [0, x]}\) dla \(\displaystyle{ -1 qslant x < 1}\).
Ostatecznie: \(\displaystyle{ \sum_{n = 1}^{\infty}\frac{x^{n}}{n} = -\ln (1 - x)}\), dla \(\displaystyle{ x [-1, 1)}\).

ODPOWIEDZ