3 całki

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
karmela41
Użytkownik
Użytkownik
Posty: 3
Rejestracja: 5 wrz 2007, o 14:24
Płeć: Kobieta
Lokalizacja: Kraków

3 całki

Post autor: karmela41 » 12 wrz 2007, o 09:50

Mam problem z całkami Czy ktos mógłby pomóc je rozwiązać? Oto one:

\(\displaystyle{ \int\frac {3x +5}{\sqrt {x^{2} + x + 1}} dx}\)

\(\displaystyle{ \int {x \ln^{2} x} dx}\)

\(\displaystyle{ \int\frac {7x^{2} - x + 1}{2x^{3} + x^{2}} dx}\)

Z góry dzięki za pomoc
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Jestemfajny
Użytkownik
Użytkownik
Posty: 187
Rejestracja: 22 lis 2006, o 21:08
Płeć: Mężczyzna
Lokalizacja: AGH
Podziękował: 10 razy
Pomógł: 36 razy

3 całki

Post autor: Jestemfajny » 12 wrz 2007, o 10:11

2.)2 razy przez części.
\(\displaystyle{ \int xln^{2}xdx\\
u=ln^{2}x \ \ \ dv=x\\
du=\frac{2lnx}{x}\ \ \ v=\frac{x^{2}}{2}\\
\frac{x^{2}ln^{2}x}{2}-\int xlnxdx...\\
u=lnx \ \ dv=x\\
du=\frac{1}{x} \ \ v=\frac{x^{2}}{2}\\
\frac{x^{2}ln^{2}x}{2}-(\frac{x^{2}lnx}{2}-\int \frac{x}{2}dx)=\frac{x^{2}ln^{2}x}{2}-\frac{x^{2}lnx}{2}+\frac{x^{2}}{4}+C}\)
Ostatnio zmieniony 12 wrz 2007, o 10:36 przez Jestemfajny, łącznie zmieniany 2 razy.

Awatar użytkownika
scyth
Gość Specjalny
Gość Specjalny
Posty: 6392
Rejestracja: 23 lip 2007, o 15:26
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy
Pomógł: 1087 razy

3 całki

Post autor: scyth » 12 wrz 2007, o 10:19

3. Rozłóż na ułamki proste:
\(\displaystyle{ \frac {7x^{2} - x + 1}{2x^{3} + x^{2}} = x^{-2} - \frac{3}{x} + \frac{13}{1+2x}}\)

jasny
Gość Specjalny
Gość Specjalny
Posty: 845
Rejestracja: 2 kwie 2006, o 23:32
Płeć: Mężczyzna
Lokalizacja: Limanowa
Pomógł: 191 razy

3 całki

Post autor: jasny » 12 wrz 2007, o 10:47

1.
\(\displaystyle{ \int\frac{3x+5}{\sqrt{x^2+x+1}}dx=\frac{3}{2}\int\frac{2x+1}{\sqrt{x^2+x+1}}+\frac{7}{2}\int\frac{dx}{\sqrt{x^2+x+1}}= 3\sqrt{x^2+x+1}+\frac{7}{2}\int\frac{dx}{\sqrt{(x+\frac{1}{2})^2+\frac{3}{4}}}}\)
\(\displaystyle{ x+\frac{1}{2}=t,\,dx=dt}\)

\(\displaystyle{ I=3\sqrt{x^2+x+1}+\frac{7}{2}\int\frac{dt}{\sqrt{t^2+\frac{3}{4}}}= 3\sqrt{x^2+x+1}+\frac{7}{2}\ln|t+\sqrt{t^2+\frac{3}{4}}|= 3\sqrt{x^2+x+1}+\frac{7}{2}\ln|x+\frac{1}{2}+\sqrt{x^2+x+1}|+C}\)

ODPOWIEDZ