Definicja liczby e - dowód istnienia odpowiedniej granicy

Własności ciągów i zbieżność, obliczanie granic. Twierdzenia o zbieżności.
Hania_87
Użytkownik
Użytkownik
Posty: 860
Rejestracja: 18 cze 2007, o 20:57
Płeć: Kobieta
Lokalizacja: Rybnik
Podziękował: 86 razy
Pomógł: 57 razy

Definicja liczby e - dowód istnienia odpowiedniej granicy

Post autor: Hania_87 » 11 wrz 2007, o 17:45

\(\displaystyle{ e:=\lim_{n\to } ft(1+\frac{1}{n}\right)^{n}\approx 2,71828}\)
Aby \(\displaystyle{ e}\) miało granicę to ten ciąg jest rosnący i ograniczony z góry przez (4).

Dlaczego jest ograniczony przez 4
Ostatnio zmieniony 11 wrz 2007, o 20:35 przez Hania_87, łącznie zmieniany 1 raz.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
max
Gość Specjalny
Gość Specjalny
Posty: 3306
Rejestracja: 10 gru 2005, o 17:48
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 37 razy
Pomógł: 778 razy

Definicja liczby e - dowód istnienia odpowiedniej granicy

Post autor: max » 11 wrz 2007, o 20:09

Granicę ma ciąg, a nie liczba \(\displaystyle{ e}\).
Dowód ograniczoności łatwo przeprowadzić korzystając z wzoru dwumiennego Newtona:
\(\displaystyle{ \left(1 + \frac{1}{n}\right)^{n} = \sum_{k = 0}^{n} {n\choose k}\frac{1}{n^{k}} qslant \sum_{k = 0}^{n} \frac{1}{k!} qslant 1 + \sum_{k = 0}^{n-1}\frac{1}{2^{k}} = 3 - \frac{1}{2^{n - 1}} < 3}\)

Hania_87
Użytkownik
Użytkownik
Posty: 860
Rejestracja: 18 cze 2007, o 20:57
Płeć: Kobieta
Lokalizacja: Rybnik
Podziękował: 86 razy
Pomógł: 57 razy

Definicja liczby e - dowód istnienia odpowiedniej granicy

Post autor: Hania_87 » 11 wrz 2007, o 20:33

jest jeszcze inny sposób na dowód: z użyciem nierówności Bernulliego - w części że ciąg jest rosnący

\(\displaystyle{ a_{n}}\)-ograniczony
\(\displaystyle{ \bigwedge\limits_{n\in N} a_{n} qslant 4}\) dla n=2k \(\displaystyle{ k\in N}\)
\(\displaystyle{ a_{2k}= (1+\frac{1}{2k})^{2k}}\)

ODPOWIEDZ