pole ograniczone liniami

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
KTK
Użytkownik
Użytkownik
Posty: 23
Rejestracja: 19 cze 2006, o 22:26
Płeć: Mężczyzna
Lokalizacja: wrocek

pole ograniczone liniami

Post autor: KTK » 10 wrz 2007, o 18:43

wydaje mi sie ze potrafie rozwiazac zadanie, ale wychodza mi jakies glupoty i nie wiem gdzie popelniam blad. Jakby mi ktos pomogl bym byl wdzieczny.

1.Oblicz pole ograniczone liniami
\(\displaystyle{ y=x^2}\)
\(\displaystyle{ y=6-x^2}\)

A to sposob jak ja to rozwiazuje.

-rysuje funkcje
-opisuje wzgledem osi OX i wychodzi
\(\displaystyle{ -\sqrt{3}\leqslant{x}\leqslant\sqrt{3}}\)
\(\displaystyle{ x^2\leqslant{x}\leqslant-x^2+6}\)

\(\displaystyle{ -\sqrt{3}}\) oraz \(\displaystyle{ \sqrt{3}}\) sa to miejsca na osi X przeciecia sie 2 funkcji otrzymane z przyrównania do siebie tych 2 funkcji.

-Nastepnie licze pole za pomoca calki podwujnej.
\(\displaystyle{ \int\limits_{-\sqrt{3}}^{\sqrt{3}}{dx}\int\limits_{x^2}^{-x^2+6}{dy}}\)
\(\displaystyle{ \int\limits_{x^2}^{-x^2+6}{dy=2x^2+6}}\)
\(\displaystyle{ \int\limits_{-\sqrt{3}}^{\sqrt{3}}{2(x^2+3)dx}}\)
\(\displaystyle{ 2\int\limits_{-\sqrt{3}}^{\sqrt{3}}{x^2 \ dx}+2\int\limits_{-\sqrt{3}}^{\sqrt{3}}{3 \ dx}}\)

Po dokonaniu calkowania wychodzi mi liczba na miusie, a pole nie moze byc ujemne ;/
wynik to
\(\displaystyle{ -4\frac{\sqrt{3}}{3}-12\sqrt{3}}\)
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Fibik
Użytkownik
Użytkownik
Posty: 955
Rejestracja: 27 wrz 2005, o 22:56
Płeć: Mężczyzna
Lokalizacja: Wrocław
Podziękował: 11 razy
Pomógł: 74 razy

pole ograniczone liniami

Post autor: Fibik » 10 wrz 2007, o 22:23

\(\displaystyle{ (-x^2 +6) - x^2 = -2x^2 + 6}\)

Awatar użytkownika
Jestemfajny
Użytkownik
Użytkownik
Posty: 187
Rejestracja: 22 lis 2006, o 21:08
Płeć: Mężczyzna
Lokalizacja: AGH
Podziękował: 10 razy
Pomógł: 36 razy

pole ograniczone liniami

Post autor: Jestemfajny » 11 wrz 2007, o 16:10

a po co liczyc podwójną??
Wystarczy tak:
\(\displaystyle{ \int\limits_{-\sqrt{3}}^{\sqrt{3}}(6-x^{2})-x^{2}=[...]=[-\frac{2x^{3}}{3}+6x]^{\sqrt{3}}_{-\sqrt{3}}}\)
Ostatnio zmieniony 11 wrz 2007, o 16:11 przez Jestemfajny, łącznie zmieniany 1 raz.

ODPOWIEDZ