ekstremum

Różniczkowalność, pochodna funkcji. Przebieg zmienności. Zadania optymalizacyjne. Równania i nierówności z wykorzystaniem rachunku różniczkowego.
rafalmistrz
Użytkownik
Użytkownik
Posty: 47
Rejestracja: 16 kwie 2007, o 22:28
Płeć: Mężczyzna
Lokalizacja: bielsk
Podziękował: 26 razy
Pomógł: 2 razy

ekstremum

Post autor: rafalmistrz » 10 wrz 2007, o 14:12

znajdz punkty podejrzane o ekstrema funkcji \(\displaystyle{ F(x,y,z)= x^{3} - 12y + z}\) pod warunkiem \(\displaystyle{ 15x - 3xy^{2} + z = 0}\)

Awatar użytkownika
scyth
Gość Specjalny
Gość Specjalny
Posty: 6392
Rejestracja: 23 lip 2007, o 15:26
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy
Pomógł: 1087 razy

ekstremum

Post autor: scyth » 11 wrz 2007, o 00:20

Sorry za te bzdury wcześniej...
Musimy jakoś wstawić warunek do wzoru funkcji. Najłatwiej tak:
\(\displaystyle{ F(x,y) = x^3-12y+3xy^2-15x}\)
Szuakmy punktów podejrzanycyh o bycie ekstremum nowej funkcji:
\(\displaystyle{ \frac{\partial F}{\partial x} = 3x^2+3y^2-15 \\
\frac{\partial F}{\partial y} = 6xy-12 \\
\begin{cases}
x^2+y^2=5 \\
xy=2
\end{cases}
(x=2 y=1) (x=1 y=2)}\)

A zatem szukane punkty to \(\displaystyle{ \{(2,1,-24), (1,2,-3) \}}\).

rafalmistrz
Użytkownik
Użytkownik
Posty: 47
Rejestracja: 16 kwie 2007, o 22:28
Płeć: Mężczyzna
Lokalizacja: bielsk
Podziękował: 26 razy
Pomógł: 2 razy

ekstremum

Post autor: rafalmistrz » 11 wrz 2007, o 18:46

za malo tych punktow, sa 4 a ty masz tylko 2

Awatar użytkownika
scyth
Gość Specjalny
Gość Specjalny
Posty: 6392
Rejestracja: 23 lip 2007, o 15:26
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy
Pomógł: 1087 razy

ekstremum

Post autor: scyth » 11 wrz 2007, o 20:44

Pozostałe punkty powinieneś uzyskać wstawiając do funkcji F:
1.
\(\displaystyle{ y^2=\frac{15x+z}{3x}}\)
2.
\(\displaystyle{ x=\frac{-z}{15-3y^2}}\)
i powtarzając rozumowanie powyżej.

ODPOWIEDZ