Permutacje

Permutacje. Kombinacje. Wariacje. Rozmieszczanie kul w urnach. Silnie i symbole Newtona. Przeliczanie zbiorów. Funkcje tworzące. Teoria grafów.
agnes01
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 9 wrz 2007, o 12:08
Płeć: Kobieta
Lokalizacja: linia

Permutacje

Post autor: agnes01 » 9 wrz 2007, o 12:26

Cześć! Bardzo proszę o rozwiązanie tych zadanek. Z góry dziękuje

Zadanie 1
Na ile wszystkich różnych sposobów można ustawić w kolejce do kasy n osób tak, aby:
a) osoba A była bliżej kasy niż osoba B
b) osoba A była bliżej kasy niż osoba B i osoba B była bliżej kasy niż osoba C

Zadanie 2
Na ile wszystkich różnych sposobów można uporządkować zbiór {1,2,..,19} tak, aby iloczyn każdych dwóch kolejnych liczb był liczbą parzystą?
Ostatnio zmieniony 9 wrz 2007, o 13:25 przez agnes01, łącznie zmieniany 1 raz.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Emiel Regis
Gość Specjalny
Gość Specjalny
Posty: 1495
Rejestracja: 26 wrz 2005, o 17:01
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 71 razy
Pomógł: 225 razy

Permutacje

Post autor: Emiel Regis » 9 wrz 2007, o 22:52

2.
Aby iloczyn każdych dwóch kolejnych liczb był liczbą parzystą to co najmniej jedna z nich musi być parzysta. Czyli na przemian musza występować liczby parzyste i nieparzyste.
Liczb nieparzystych jest 10, czyli rozłożeń ich na dziesięciu miejscach jest 10!, z parzystymi podobnie - 9!.
Ostatecznie:
\(\displaystyle{ 9! 10!}\)

jovante
Użytkownik
Użytkownik
Posty: 204
Rejestracja: 23 cze 2007, o 14:32
Płeć: Mężczyzna
Lokalizacja: Siedlce
Pomógł: 56 razy

Permutacje

Post autor: jovante » 10 wrz 2007, o 04:13

Zadanie 1

a) tyle samo ile sposobów, aby osoba B była bliżej kasy niż osoba A, czyli \(\displaystyle{ \frac{n!}{2}}\)

b) korzystając z wyniku z pkt. a) wynik znajdziemy sumując szereg

\(\displaystyle{ \sum_{i=1}^{n-2}\frac{(n-i)!}{2}{n-3 \choose i-1}(i-1)!=\frac{n!}{6}}\)

pewnie jest jakiś prostszy sposób, ale o tej porze nie przyszedł mi do głowy...

agnes01
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 9 wrz 2007, o 12:08
Płeć: Kobieta
Lokalizacja: linia

Permutacje

Post autor: agnes01 » 10 wrz 2007, o 04:28

Dziękuje!

Awatar użytkownika
Emiel Regis
Gość Specjalny
Gość Specjalny
Posty: 1495
Rejestracja: 26 wrz 2005, o 17:01
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 71 razy
Pomógł: 225 razy

Permutacje

Post autor: Emiel Regis » 10 wrz 2007, o 10:58

ooo wpadłem na pomysł jak zrobić łatwiej podpunkt b)
Sześć poniższych zdarzeń ma takie samo prawdopodobieństwo oraz wyczerpuje ustawienia:
osoba A była bliżej kasy niż osoba B i osoba B była bliżej kasy niż osoba C: ozn. A ... B ... C
A ... C ... B
B ... A ... C
B ... C ... A
C ... A ... B
C ... B ... A
Czyli każde można zrealizować na \(\displaystyle{ \frac{n!}{6}}\) sposobów.

ODPOWIEDZ