równanie różniczkowe

Różniczkowalność, pochodna funkcji. Przebieg zmienności. Zadania optymalizacyjne. Równania i nierówności z wykorzystaniem rachunku różniczkowego.
kamilekl
Użytkownik
Użytkownik
Posty: 30
Rejestracja: 15 gru 2006, o 20:56
Płeć: Mężczyzna
Lokalizacja: kraków
Podziękował: 4 razy

równanie różniczkowe

Post autor: kamilekl » 8 wrz 2007, o 13:21

rozwiąż równanie różniczkowe\(\displaystyle{ {y'}+\frac{2y}{x}=\frac{cosx}{x^{2}}}\) prosilbym o całkowite rozwiazanie krok po kroku moze z jamims małym wytłumaczeniem wielkie dzieki
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Kasiula@
Użytkownik
Użytkownik
Posty: 145
Rejestracja: 24 lut 2007, o 16:18
Płeć: Kobieta
Lokalizacja: Podlasie
Podziękował: 7 razy
Pomógł: 27 razy

równanie różniczkowe

Post autor: Kasiula@ » 8 wrz 2007, o 18:25

Najpierw rozwiązujemy równanie jednorodne,czyli:
\(\displaystyle{ y'+\frac{2y}{x}=0}\)
\(\displaystyle{ y'=-\frac{2y}{x} ftrightarrow \frac{dy}{y}=-\frac{2}{x}dx}\)
Całkujemy obie strony równania:
\(\displaystyle{ \int \frac{dy}{y}=\int -\frac{2}{x}dx}\) i otrzymujemy:
\(\displaystyle{ ln y=-2 ln x +C ftrightarrow ln y=ln x^{-2}+C ftrightarrow y=C_{1}x^{-2}}\)

W celu rozwiazania danego równania niejednorodnego uzmienniami stałą,czyli \(\displaystyle{ C_{1}=C_{1}(x)}\). Zatem \(\displaystyle{ y=C_{1}(x)x^{-2}}\).
\(\displaystyle{ y'=C'_{1}x^{-2}-2C_{1}x^{-3}}\)
Podstawiamy do wyjsciowego równania i otrzymujemy:
\(\displaystyle{ C'_{1}x^{-2}-2C_{1}x^{-3}+2C_{1}x^{-3}=\frac{\cos x}{x^{2}} ftrightarrow \frac{C'_{1}}{x^{2}}=\frac{\cos x}{x^{2}} ftrightarrow C'_{1}=\cos x}\)
Całkujemy obustronnie:
\(\displaystyle{ \int C'_{1} = t \cos x dx}\) i otrzymujemy:
\(\displaystyle{ C_{1}=\sin x +C_{2}}\)

Zatem ostateczne rozwiązania danego równania ma postać:
\(\displaystyle{ y=\frac{\sin x + C_{2}}{x^{2}}}\)

ODPOWIEDZ