caleczka

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
Awatar użytkownika
setch
Użytkownik
Użytkownik
Posty: 1307
Rejestracja: 14 sie 2006, o 22:37
Płeć: Mężczyzna
Lokalizacja: Bełchatów
Podziękował: 155 razy
Pomógł: 207 razy

caleczka

Post autor: setch » 7 wrz 2007, o 16:03

\(\displaystyle{ \int x^4(1+x)^3dx}\)
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
qaz
Użytkownik
Użytkownik
Posty: 486
Rejestracja: 28 paź 2006, o 21:56
Płeć: Kobieta
Lokalizacja: Gobbos' Kingdom
Podziękował: 311 razy
Pomógł: 5 razy

caleczka

Post autor: qaz » 7 wrz 2007, o 16:06

wykonaj działanie potęgowania, potem pomnóż przez \(\displaystyle{ x^4}\) i rozbij na sume całek

Awatar użytkownika
setch
Użytkownik
Użytkownik
Posty: 1307
Rejestracja: 14 sie 2006, o 22:37
Płeć: Mężczyzna
Lokalizacja: Bełchatów
Podziękował: 155 razy
Pomógł: 207 razy

caleczka

Post autor: setch » 7 wrz 2007, o 16:23

nie ma jakiegoś szybsze sposobu?

Awatar użytkownika
Calasilyar
Gość Specjalny
Gość Specjalny
Posty: 2656
Rejestracja: 2 maja 2006, o 21:42
Płeć: Mężczyzna
Lokalizacja: Wrocław/Sieradz
Podziękował: 29 razy
Pomógł: 410 razy

caleczka

Post autor: Calasilyar » 7 wrz 2007, o 16:25

szybszego raczej nie

Awatar użytkownika
max
Gość Specjalny
Gość Specjalny
Posty: 3306
Rejestracja: 10 gru 2005, o 17:48
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 37 razy
Pomógł: 778 razy

caleczka

Post autor: max » 7 wrz 2007, o 23:25

Ewentualnie możesz kilkakrotnie machnąć przez części, różniczkując za każdym razem potęgę \(\displaystyle{ x}\).

ODPOWIEDZ