Talia kart

Definicja klasyczna. Prawdopodobieństwo warunkowe i całkowite. Zmienne losowe i ich parametry. Niezależność. Prawa wielkich liczb oraz centralne twierdzenia graniczne i ich zastosowania.
maciejka
Użytkownik
Użytkownik
Posty: 99
Rejestracja: 1 kwie 2007, o 09:25
Płeć: Kobieta
Lokalizacja: Szczecin
Podziękował: 9 razy

Talia kart

Post autor: maciejka » 6 wrz 2007, o 17:01

Z talii kart, losujemy z zwracaniem 8 kart. Jakie jest prawdopodobieństwo wylosowania :
a) jednego króla
b) waleta kier
c) karety asów
Po moich dywagacjach: a) \(\displaystyle{ \frac{4}{52}}\) b)\(\displaystyle{ \frac{1}{52}}\) c) ????
Jaka byłaby odpowiedź gdyby losowanie byłe bez zwracania kart? Dziekuję za wszelkie odpowiedzi ))
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

mostostalek
Użytkownik
Użytkownik
Posty: 1384
Rejestracja: 26 lis 2006, o 21:34
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 33 razy
Pomógł: 268 razy

Talia kart

Post autor: mostostalek » 7 wrz 2007, o 00:09

przeczytaj jeszcze raz zadanie.. losujesz 8 kart ze zwracaniem.. jakie masz szanse że wylosujesz:

a) dokładnie jednego króla??
\(\displaystyle{ \frac{1}{13}}\)?? tak, w przypadku gdy losujesz jedną kartę.. tu losujesz ich 8..

rozwiązanie jest zatem inne: \(\displaystyle{ \frac{1}{13} ft(\frac{12}{13}\right)^7}\)

pierwszy czynnik odpowiada za wylosowanie króla.. drugi by nie wylosować ich więcej

b) podobna pomyłka.. walet kier, chyba też chodzi dokładnie o jednego waleta kier

zatem: \(\displaystyle{ \frac{1}{52} ft(\frac{51}{52}\right)^7}\)

c) \(\displaystyle{ \left(\frac{1}{52}\right)^4 ft(\frac{12}{13}\right)^4}\)

co by było gdyby to było bez zwracania?? niezły burdel myślę, że 1/10 pktów za poczucie humoru dostaniesz jeśli udzielisz takiej odpowiedzi..

Awatar użytkownika
Emiel Regis
Gość Specjalny
Gość Specjalny
Posty: 1495
Rejestracja: 26 wrz 2005, o 17:01
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 71 razy
Pomógł: 225 razy

Talia kart

Post autor: Emiel Regis » 7 wrz 2007, o 15:26

Widze że jest już progresja w poprawnosci rozwiazan aczkolwiek jeszcze brakuje czegoś.
mostostalek, musisz jeszcze podomnażać ponieważ np w podpunkcie a) król może zostać wylosowany w ośmiu losowaniach, czyli Twój wynik razy 8.

mostostalek
Użytkownik
Użytkownik
Posty: 1384
Rejestracja: 26 lis 2006, o 21:34
Płeć: Mężczyzna
Lokalizacja: Poznań
Podziękował: 33 razy
Pomógł: 268 razy

Talia kart

Post autor: mostostalek » 7 wrz 2007, o 16:25

Drizzt pisze:musisz jeszcze podomnażać ponieważ np w podpunkcie a) król może zostać wylosowany w ośmiu losowaniach, czyli Twój wynik razy 8.
racja.. czyli:
a) \(\displaystyle{ \frac{1}{13} ft(\frac{12}{13}\right)^7 {8\choose1}= \frac{1}{13} ft(\frac{12}{13}\right)^7 8}\)

b) podobnie.. \(\displaystyle{ \frac{1}{52} ft(\frac{51}{52}\right)^7 8}\)

c) tutaj nie jestem pewien ale chyba to coś takiego:

\(\displaystyle{ \left(\frac{1}{52}\right)^4 ft(\frac{12}{13}\right)^4 {8\choose1}\cdot {7\choose1} {6\choose1} {5\choose1}}\)

gdzie ostatnie cztery czynniki odpowiadają za wybór losowania, którym ma zosatać wylosowany poszczególny as..

Awatar użytkownika
Emiel Regis
Gość Specjalny
Gość Specjalny
Posty: 1495
Rejestracja: 26 wrz 2005, o 17:01
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 71 razy
Pomógł: 225 razy

Talia kart

Post autor: Emiel Regis » 7 wrz 2007, o 17:27

Co do ostatniego to ja tam nie znam zasad pokera... Ciekawe czy np cztery asy pik stanowią karete; )
Sądze ze osoba która by taką karete pokazała to by kulke zarobiła zamiast pieniedzy; )

ODPOWIEDZ