Znaleźć i naszkicować zbiór

Definicja. Postać wykładnicza i trygonometryczna. Zagadnienia związane z ciałem liczb zespolonych.
Novy
Użytkownik
Użytkownik
Posty: 126
Rejestracja: 20 sie 2007, o 21:18
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy

Znaleźć i naszkicować zbiór

Post autor: Novy » 6 wrz 2007, o 12:47

\(\displaystyle{ z\in{C} \,\,\,:\,\,\,Im(z^{3})\leqslant0}\)

huh? czy ktoś mógły porobić stosowne obliczenia?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
scyth
Gość Specjalny
Gość Specjalny
Posty: 6392
Rejestracja: 23 lip 2007, o 15:26
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy
Pomógł: 1087 razy

Znaleźć i naszkicować zbiór

Post autor: scyth » 6 wrz 2007, o 12:58

Może z de Moivre'a:
\(\displaystyle{ z = |z| (\sin \varphi+i\cos\varphi) \\
z^3 = |z|^3 (\sin 3 \varphi+i\cos 3 \varphi) \Rightarrow \cos 3 \varphi \le 0}\)

Novy
Użytkownik
Użytkownik
Posty: 126
Rejestracja: 20 sie 2007, o 21:18
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy

Znaleźć i naszkicować zbiór

Post autor: Novy » 6 wrz 2007, o 13:09

racja.. tylko jak to teraz narysować.. bo chyba nie sam wykres cos3x i zaznczyć, że mniejszy równy 0

Awatar użytkownika
scyth
Gość Specjalny
Gość Specjalny
Posty: 6392
Rejestracja: 23 lip 2007, o 15:26
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy
Pomógł: 1087 razy

Znaleźć i naszkicować zbiór

Post autor: scyth » 6 wrz 2007, o 13:27

No pewnie że nie .
A tak w ogóle to źle napisałem ten wzór...
Jeśli masz to naszkicawać to może lepiej skorzystać z zapisu \(\displaystyle{ z=x+iy}\). Wtedy:
\(\displaystyle{ z^3=x^3-3xy^2+i(3x^2y-y^3) y(3x^2-y^2) 0}\)
Zatem gdy:
\(\displaystyle{ y 0}\) to \(\displaystyle{ x ft\cup\left}\)
\(\displaystyle{ y > 0}\) to \(\displaystyle{ x ft< -\frac{y}{\sqrt{3}}, \frac{y}{\sqrt{3}} \right>}\)
A to już można łatwo narysować (w sumie dwie proste i zaznaczyć obszary).

Novy
Użytkownik
Użytkownik
Posty: 126
Rejestracja: 20 sie 2007, o 21:18
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy

Znaleźć i naszkicować zbiór

Post autor: Novy » 6 wrz 2007, o 15:12

ok

a teraz jeszcze takie coś:

\(\displaystyle{ z\in{C}: z^{4} = (1+2j)^{8}}}\)

po obliczeniach wychodzi mi z=-3+4i
mozna jeszcze prawą stronę przerzucić na lewą, zeby zostało 1 po prawej stronie. Jedynkę zamienić na postać tryg... ale nie wiem jak to narysować dokładnie..

Awatar użytkownika
Calasilyar
Gość Specjalny
Gość Specjalny
Posty: 2656
Rejestracja: 2 maja 2006, o 21:42
Płeć: Mężczyzna
Lokalizacja: Wrocław/Sieradz
Podziękował: 29 razy
Pomógł: 410 razy

Znaleźć i naszkicować zbiór

Post autor: Calasilyar » 6 wrz 2007, o 19:59

\(\displaystyle{ z^{4}-(1+2j)^{8}=0\\
(z^{2}-(1+2j)^{4})(z^{2}+(1+2j)^{4})=0\\
(z-(1+2j)^{2})(z+(1+2j)^{2})(z-(1+2j)^{2}j)(z+(1+2j)^{2}j)=0\\
z_{1}=(1+2j)^{2}\\
z_{2}=-(1+2j)^{2}\\
z_{3}=(1+2j)^{2}j=...\\
z_{4}=-(1+2j)^{2}j=...\\}\)

i teraz to tylko doprowadzić do postaci: \(\displaystyle{ z=a+bj}\)

ODPOWIEDZ