eksterma i asymptoty

Różniczkowalność, pochodna funkcji. Przebieg zmienności. Zadania optymalizacyjne. Równania i nierówności z wykorzystaniem rachunku różniczkowego.
crayan4
Użytkownik
Użytkownik
Posty: 72
Rejestracja: 14 sie 2007, o 17:00
Płeć: Mężczyzna
Lokalizacja: Kraków

eksterma i asymptoty

Post autor: crayan4 » 4 wrz 2007, o 14:20

Wyznaczyć ekstrema i wszystkie asymptoty funkcji:

\(\displaystyle{ f(x)= xln(e + \frac{1}{x})}\)

Prosze o pomoc

[ Dodano: 4 Września 2007, 16:14 ]
Czyżby nikt nie umiał tego zrobić? Naprawde proszę o szybką odpowiedź ...
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

robin5hood
Użytkownik
Użytkownik
Posty: 1676
Rejestracja: 2 kwie 2007, o 14:43
Płeć: Mężczyzna
Lokalizacja: warszawa
Podziękował: 178 razy
Pomógł: 17 razy

eksterma i asymptoty

Post autor: robin5hood » 8 wrz 2007, o 18:21

\(\displaystyle{ \lim_{x\to - \frac{1}{e}} xln(e+\frac{1}{x})=+ }\)
zatem \(\displaystyle{ x=\frac{1}{e}}\) -asymtota pionowa lewostronna

\(\displaystyle{ \lim_{x\to } \frac{f(x)}{x}=\lim_{x\to } ln(e+\frac{1}{x})=1}\)
\(\displaystyle{ \lim_{x\to } [xln(e+\frac{1}{x})-x]=\lim_{x\to } x[ln(e+\frac{1}{x})-lne]= \lim_{x\to } \frac{ln(1+\frac{1}{ex})}{\frac{1}{x}}}\)
teraz z twierdzenia hospitala otrzymujemy
\(\displaystyle{ \lim_{x\to } \frac{1}{e} \frac{1}{1+\frac{1}{ex}}=\frac{1}{e}}\)
zatem asymtota ukosna obustronna to
\(\displaystyle{ y=x+\frac{1}{e}}\)
wiecej asymtot chyba juz nie ma

crayan4
Użytkownik
Użytkownik
Posty: 72
Rejestracja: 14 sie 2007, o 17:00
Płeć: Mężczyzna
Lokalizacja: Kraków

eksterma i asymptoty

Post autor: crayan4 » 17 wrz 2007, o 16:46

czemu ta granica prz x dążącym do 1/e jest rowna - nieskonczoność? Mi wychodzilo że 1/e???

ODPOWIEDZ