Rozwinięcie funkcji z arcusem tangensem w szereg potęgowy

Istnienie i ciągłość funkcji granicznej, jednostajna zbieżność. Zmiana kolejności przejścia granicznego. Różniczkowanie i całkowanie szeregów. Istnienie i zbieżność rozwinięć Taylora, Maclaurina, Fouriera itd.
Kaktusiewicz
Użytkownik
Użytkownik
Posty: 60
Rejestracja: 21 kwie 2007, o 19:15
Płeć: Mężczyzna
Lokalizacja: Chełm Śląski
Podziękował: 16 razy

Rozwinięcie funkcji z arcusem tangensem w szereg potęgowy

Post autor: Kaktusiewicz » 2 wrz 2007, o 19:50

Witam!
Głowię się nad następującym zadaniem:
Rozwinąć w szereg potęgowy w otoczeniu \(\displaystyle{ x_{0}=0}\) funkcję \(\displaystyle{ f(x)=xarctg2x}\).
Dla jakich x funkcja jest róna sumie tego rozwinięcia? Obliczyć \(\displaystyle{ \int\sum_{n=0}^{\infty}(-1)^n\frac{1}{2n+1}}\).

Po zróżniczkowaniu funkcji x2 otrzymuję: \(\displaystyle{ f''(x)=\left(\frac{2}{1+4x^{2}}\right)^2}\) i w tym momencie się zacinam. Funkcja w nawiasie jest równa \(\displaystyle{ \sum_{n=0}^{\infty}2(-4x^{2})^2}\). Podnosząc ją do kwadratu otrzymamy ciąg Cauchy'ego, a chyba nie o to chodziło.
Czy w ogóle zmierzam w dobrym kierunku? Pomóżcie rozwiązać to zadanie.
Bardzo proszę.

Z Regulaminu:
[quote]5. Temat:
(...)
5.6 Nie powinien zawierać wzorów, symboli i wyrażeń matematycznych. [/quote]
max
Ostatnio zmieniony 3 wrz 2007, o 13:52 przez Kaktusiewicz, łącznie zmieniany 2 razy.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
max
Gość Specjalny
Gość Specjalny
Posty: 3306
Rejestracja: 10 gru 2005, o 17:48
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 37 razy
Pomógł: 778 razy

Rozwinięcie funkcji z arcusem tangensem w szereg potęgowy

Post autor: max » 2 wrz 2007, o 21:46

Jak chcesz dalej iść tym tropem to wyznacz ten iloczyn i dwa razy scałkuj wyraz za wyrazem...
Ale szybciej chyba byłoby zacząć od rozwinięcia w szereg funkcji \(\displaystyle{ x \mapsto \arctan x}\)

Kaktusiewicz
Użytkownik
Użytkownik
Posty: 60
Rejestracja: 21 kwie 2007, o 19:15
Płeć: Mężczyzna
Lokalizacja: Chełm Śląski
Podziękował: 16 razy

Rozwinięcie funkcji z arcusem tangensem w szereg potęgowy

Post autor: Kaktusiewicz » 3 wrz 2007, o 09:03

Witam,
a jak dokonać tego rowinięcia, \(\displaystyle{ x \mapsto \arctan x}\), bo nic mi nie przychodzi do głowy?

Awatar użytkownika
Emiel Regis
Gość Specjalny
Gość Specjalny
Posty: 1495
Rejestracja: 26 wrz 2005, o 17:01
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 71 razy
Pomógł: 225 razy

Rozwinięcie funkcji z arcusem tangensem w szereg potęgowy

Post autor: Emiel Regis » 3 wrz 2007, o 09:34

\(\displaystyle{ (arctanx)'=\frac{1}{1+x^2}=\frac{1}{1-(-x^2)}=\sum_{n=0}^{\infty}(-x^2)^n}\)
Teraz tylko scałkuj obie strony i będzie szereg arctan.

Kaktusiewicz
Użytkownik
Użytkownik
Posty: 60
Rejestracja: 21 kwie 2007, o 19:15
Płeć: Mężczyzna
Lokalizacja: Chełm Śląski
Podziękował: 16 razy

Rozwinięcie funkcji z arcusem tangensem w szereg potęgowy

Post autor: Kaktusiewicz » 3 wrz 2007, o 12:56

Czyli rozpisuję funkcję: \(\displaystyle{ f(x)=xg(x)}\), gdzie \(\displaystyle{ g(x)=arctan2x}\).
Później obliczam pochodną funkcji g: \(\displaystyle{ g'(x)=\frac{2}{1+(2x)^2}=\sum_{n=0}^{\infty}2(-4x^2)^n}}\).
Całkuję tę sumę i otrzymuję: \(\displaystyle{ g(x)=2\sum_{n=0}^{\infty}(-4)^n\frac{x^{2n+1}}{2n+1}}\). Z tego wynika, że \(\displaystyle{ f(x)=2x\sum_{n=0}^{\infty}(-4)^n\frac{x^{2n+1}}{2n+1}}\). Dobrze? Czy mogę teraz wciągnąć x-a pod znak sumy?

Awatar użytkownika
Emiel Regis
Gość Specjalny
Gość Specjalny
Posty: 1495
Rejestracja: 26 wrz 2005, o 17:01
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 71 razy
Pomógł: 225 razy

Rozwinięcie funkcji z arcusem tangensem w szereg potęgowy

Post autor: Emiel Regis » 3 wrz 2007, o 13:09

Rachunki wyglądają na poprawne aczkolwiek ciągle uważam że robisz to na około.
Wg mnie łatwiej tak jak Ci pisalem, w takich przypadkach rozpisać samego arcusa z argumentem x. A potem mając już jego gotowy szereg jako argument za x można wstawiać co się podoba.

A co do Twojego wyniku to oczywiscie możesz x wciągnąć pod szereg. Dwójkę także.

Kaktusiewicz
Użytkownik
Użytkownik
Posty: 60
Rejestracja: 21 kwie 2007, o 19:15
Płeć: Mężczyzna
Lokalizacja: Chełm Śląski
Podziękował: 16 razy

Rozwinięcie funkcji z arcusem tangensem w szereg potęgowy

Post autor: Kaktusiewicz » 3 wrz 2007, o 14:08

Witam!
Dziękuję za odpowiedzi.
Jeszcze tylko jedno: Dla jakich x funkcja jest róna sumie tego rozwinięcia?

P.S. Resztę obliczyłem: \(\displaystyle{ \int\sum_{n=0}^{\infty}(-1)^n\frac{1}{2n+1}=\frac{\pi}{4}}\).

ODPOWIEDZ