[LIX OM] I etap

Dla wtajemniczonych;) Największa impreza dla matematyków poniżej studiów, czyli Olimpiada Matematyczna oraz Olimpiada Matematyczna Gimnazjalistów.
fatfisz
Użytkownik
Użytkownik
Posty: 6
Rejestracja: 8 paź 2007, o 23:04
Płeć: Mężczyzna
Lokalizacja: Szczecin

[LIX OM] I etap

Post autor: fatfisz » 8 paź 2007, o 23:33

Mogę teraz tylko życzyć powodzenia i w OM i na maturze wszystkim star(sz)ym
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Malina015
Użytkownik
Użytkownik
Posty: 32
Rejestracja: 8 paź 2007, o 19:23
Płeć: Kobieta
Lokalizacja: stąd
Pomógł: 6 razy

[LIX OM] I etap

Post autor: Malina015 » 8 paź 2007, o 23:39

Jestem w Twoim wieku, ale klasę wyżej Więc ani ja stara, ani starsza. A powodzenie się przyda, zawsze.

Piotr Rutkowski
Gość Specjalny
Gość Specjalny
Posty: 2234
Rejestracja: 26 paź 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 22 razy
Pomógł: 389 razy

[LIX OM] I etap

Post autor: Piotr Rutkowski » 9 paź 2007, o 00:02

Dobra, można chyba ogłosić koniec pierwszej serii.
Moje rozwiązania wyglądały mniej więcej tak:
1)rozpatrujemy 3 przypadki, a następnie zakładamy sobie nierówności co do x, y oraz z i pięknie wychodzi sprzeczność
2)uff, tutaj symetria względem ramion, dwusiecznej, a potem mały lemat No i oczywiście trójkąty przystające
3)dochodzimy do postaci \(\displaystyle{ a_{k}|75(a_{k-1})^{2}}\), udowadniamy niepodzielność przez 3 i 5 \(\displaystyle{ a_{k}}\) a potem łatwo udowodnić, że \(\displaystyle{ NWD(a_{k}.a_{k-1})=1}\)
4)tutaj chyba najłatwiej, rozpatrujemy sobie, że suma od n to jest suma od n-1 + cośtam. Potem przyglądamy się temu cośtam, i wychodzi, że jest ono równe:\(\displaystyle{ X=2^{n-1}*n-S_{n-1}}\), gdzie S od n-1

Malina015
Użytkownik
Użytkownik
Posty: 32
Rejestracja: 8 paź 2007, o 19:23
Płeć: Kobieta
Lokalizacja: stąd
Pomógł: 6 razy

[LIX OM] I etap

Post autor: Malina015 » 9 paź 2007, o 00:07

ZAdanie nr 3 identycznie. Co do pierwszego to po prostu x=y=z co oznacza, ze
x=-2, x=-1, x=0, x=1, x= 2 (oczywiście lub, ale ślepa jestem, albo znaczka nie ma na klawaiturze).
Zdanie nr 4 muszę się przyjrzeć dokłądniej, jak to wygląda u Ciebie.
A zadanie nr 2, to coś w tym stylu, tylko, ze jakoś nie jestem przekonana do tego co ja tam napisałam.

Awatar użytkownika
dabros
Użytkownik
Użytkownik
Posty: 1121
Rejestracja: 2 cze 2006, o 21:41
Płeć: Mężczyzna
Lokalizacja: Lublin
Podziękował: 48 razy
Pomógł: 4 razy

[LIX OM] I etap

Post autor: dabros » 9 paź 2007, o 00:09

moje pomysly na rozwiazanie zadan wygladaja dosc podobnie
w drugim wykorzystalem wlasnosci elipsy( punkt A sluzyl jako jedno z ognisk)

Piotr Rutkowski
Gość Specjalny
Gość Specjalny
Posty: 2234
Rejestracja: 26 paź 2006, o 18:08
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 22 razy
Pomógł: 389 razy

[LIX OM] I etap

Post autor: Piotr Rutkowski » 9 paź 2007, o 00:11

Jak chcesz mogę sobie zamieścić pełny dowód 4):
\(\displaystyle{ S_{n}=S_{n-1}+X}\), gdzie X to suma od podzbiorów zawierających element n
Zauważamy, że podzbiory X to podzbiory zbioru \(\displaystyle{ [1,2,...,(n-1)]}\), do których do każdego dołożono element n. Dodatkowo \(\displaystyle{ w[1,2,...,n]=n-w[1,2,...,(n-1]}\)(*)
Stosując (*) w ogólności do X otrzymamy \(\displaystyle{ X=2^{n-1}*n-S_{n-1}}\) Podstawiając do pierwszego równania:
\(\displaystyle{ S_{n}=n*2^{n-1}}\)

EDIT: dabros, mógłbyś przytoczyć taki dowód? Słyszałem, że da się zrobić z tw. Ptolemeusza, ale o elipsie tonie słyszałem. Twój dowód zapowiada się ciekawie

HawaT
Użytkownik
Użytkownik
Posty: 49
Rejestracja: 23 paź 2006, o 18:45
Płeć: Mężczyzna
Lokalizacja: Płock

[LIX OM] I etap

Post autor: HawaT » 9 paź 2007, o 00:20

Zadanie pierwsze mam podobnie.
Zadanie 2gie mam tak na sile i dlugo wiec nie bede pisal, wasze rozwiazanie jest o wiele lepsze
Co do 3ciego to samo
4te- Bierzemy liczbe w(A) utworzona z podzibioru {1,2,..,n}, takiego ze n jest jednym elementem tego podzbioru. Pozniej bierzy liczbe w(A) utworzona z tego samego podzbioru tyle ze bez n. Suma daje nam n ( bo skladniki sie poredukuja ). I pozniej pokazujemy ze tych liczb bedzie tyle i tyle i ze to beda wszystkie rozpatruywane no i mamy ten sam wynik:P

Awatar użytkownika
Menda
Użytkownik
Użytkownik
Posty: 105
Rejestracja: 13 wrz 2007, o 15:35
Płeć: Mężczyzna
Lokalizacja: Staszów
Podziękował: 12 razy
Pomógł: 4 razy

[LIX OM] I etap

Post autor: Menda » 9 paź 2007, o 00:22

Zad.1
niech z=max(x,y,z) wtedy po odjęciu jakichś tam dwóch równań od siebie mamy x>=y oraz y>=x. A stąd od razu x=y=z.
Zad.2
Obrót pkt. A o kąt dany w zadaniu wokół pkt P. i zastosowanie nierówności trójkąta.
Zad.3
Rozpatrując (mod 3) i (mod 5) otrzymujemy niepodzielność każdego wyrazu ciągu przez 3 i 5.
Wtedy niech d=NWD( A(k),A(k+1)), jest względnie pierwsze z 3 i 5. Łatwo pokazać że d=1. Analogicznie NWD(A(k), A(k+2))=1, skąd wynika odpowiedź.
Zad.4
Bleeeeeeh kombinatoryka....

X= n * 2^(n-1) ??


Pozdro

Malina015
Użytkownik
Użytkownik
Posty: 32
Rejestracja: 8 paź 2007, o 19:23
Płeć: Kobieta
Lokalizacja: stąd
Pomógł: 6 razy

[LIX OM] I etap

Post autor: Malina015 » 9 paź 2007, o 00:25

Zadanie 4.
Wygląda to ładnie, ale za późno już na działanie moich komórek w celu sprawdzania tego. Natomiast cudownie jest ujrzeć rozwiązane zadania, zaraz po tym jak upływa termin. Gdyby nie forum pewnie bym długo na to czekała.
Co do zadania nr 3 , niestety trochę się przy tym rozpisałam, w sumie to samo tylko opisane słowami.

Darij_07
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 9 paź 2007, o 00:23
Płeć: Mężczyzna
Lokalizacja: różnie bywa

[LIX OM] I etap

Post autor: Darij_07 » 9 paź 2007, o 00:30

2. prosto idzie z Ptolemeusza. Wystarczy tylko zauważyć, że dwusieczna kąta XPY przecina odcinek XY pod kątem prostym dzieląc go na pół (XPY jest równoramienny) i potem z f-cji trygonometrycznych (sin dla polowy kąta XPY) wychodzi ładnie, że dla najmniejszej sumy zachodzi twierdzenie ptolemeusza, zatem mozna wpisac czworokąt w okrąg a dalej to juz banał (kąty wpisane)

Awatar użytkownika
hellsing
Użytkownik
Użytkownik
Posty: 191
Rejestracja: 30 mar 2006, o 14:09
Płeć: Mężczyzna
Lokalizacja: Z kątowni
Podziękował: 11 razy
Pomógł: 16 razy

[LIX OM] I etap

Post autor: hellsing » 9 paź 2007, o 09:47

pierwsze przez sprzeczność dochodzę do tego że x=y=z potem dodać stronami...
drugie przystawanie trójkątów i to że min(a+b)=Min a+ min b dla dodatnich a,b
trzecie spieprzyłem
czwarte nie napisałem ze s(n)=s(n-1)+X i zostawiłem wzór z signumami...

mdz
Użytkownik
Użytkownik
Posty: 40
Rejestracja: 7 paź 2007, o 20:38
Płeć: Mężczyzna
Pomógł: 8 razy

[LIX OM] I etap

Post autor: mdz » 9 paź 2007, o 13:44

Jak wam idzie 2 seria i co sądzicie na temat zadań? Macie stereometrię?

Awatar użytkownika
przemk20
Użytkownik
Użytkownik
Posty: 1094
Rejestracja: 6 gru 2006, o 22:47
Płeć: Mężczyzna
Lokalizacja: Olesno
Podziękował: 45 razy
Pomógł: 236 razy

[LIX OM] I etap

Post autor: przemk20 » 9 paź 2007, o 14:22

A zrobil ktos 4 tak ze liczyl bezposrednio S(n), nie badajac roznicy S(n)- S(n-1), bo wlasnie jak tak mam, a co do drugiej serii to trzeba tylko przepisac na czysto....

szablewskil
Użytkownik
Użytkownik
Posty: 261
Rejestracja: 18 maja 2007, o 21:42
Płeć: Mężczyzna
Lokalizacja: Kruszyny
Podziękował: 14 razy
Pomógł: 21 razy

[LIX OM] I etap

Post autor: szablewskil » 9 paź 2007, o 15:11

Ja trzecie robiłem z algorytmu euklidesa że NWD(a(k),a(k-1))=NWD(a(k-1),5a(k-2)) ale
a(k-1) napewno nie jest podzielne przez 5 itd, i potem mialem ze NWD(a(k),a(k-2))=NWD(a(k-2),15a(k-3)) itd może tak być?

Awatar użytkownika
Menda
Użytkownik
Użytkownik
Posty: 105
Rejestracja: 13 wrz 2007, o 15:35
Płeć: Mężczyzna
Lokalizacja: Staszów
Podziękował: 12 razy
Pomógł: 4 razy

[LIX OM] I etap

Post autor: Menda » 9 paź 2007, o 15:33

mdz pisze:Jak wam idzie 2 seria i co sądzicie na temat zadań? Macie stereometrię?
W poprzednich latach były trudniejsze, znacznie trudniejsze...
Ta stereometria to taka swoista planimetria w 3D

Pozdro

ODPOWIEDZ