Definicja wartości oczekiwanej.

Definicja klasyczna. Prawdopodobieństwo warunkowe i całkowite. Zmienne losowe i ich parametry. Niezależność. Prawa wielkich liczb oraz centralne twierdzenia graniczne i ich zastosowania.
Awatar użytkownika
Emiel Regis
Gość Specjalny
Gość Specjalny
Posty: 1495
Rejestracja: 26 wrz 2005, o 17:01
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 71 razy
Pomógł: 225 razy

Definicja wartości oczekiwanej.

Post autor: Emiel Regis » 31 sie 2007, o 22:05

Definicja:
\(\displaystyle{ EX= \int_{\Omega}XdP}\)
czasami też taka:
\(\displaystyle{ EX= \int_R xf_X(x)dx}\)
No i trochę nie bardzo potrafię sobie wyobrazić tą pierwszą definicję. O ile definicję całki Riemanna znam i w uproszczeniu rozumieć ją możemy jako:
\(\displaystyle{ \int_a^b f(x)dx = lim_{n \to \infty} \sum_{i=1}^n f(\zeta_i) \Delta x_i}\)
czyli różniczka dx jako mały przyrost oraz f(x) jako wartosc, suma pól takich prostokątów.
I jak można intuicyjnie rozumieć własnie tą pierwszą definicje? To dP to jest przyrost prawdopodobieństwa? (cokolwiek to miałoby znaczyć)
Oczywiscie zdaje sobie sprawę że ona jest szersza niż całka Riemanna jednak zostańmy przy niej, bez odwoływania się do Lebesgue'a i czegokolwiek innego.

[edit]
Interpretacja tego jako całki Lebesgue'a jest chyba najrozsądniejsza jednak. Bierzemy x, mierzymy miarą P jego przeciwobraz, a potem mnożymy razy wzieta wartość x i sumujemy. Tak po skrócie.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

ODPOWIEDZ