Strumień pola wektorowego i transformata Laplace'a

Analiza funkcjonalna, operatory liniowe. Analiza na rozmaitościach. Inne zagadnienia analizy wyższej
LapKom
Użytkownik
Użytkownik
Posty: 3
Rejestracja: 29 sie 2007, o 19:56
Płeć: Mężczyzna
Lokalizacja: Warszawa

Strumień pola wektorowego i transformata Laplace'a

Post autor: LapKom » 29 sie 2007, o 20:08

Witam.
Mam problem z rozwiązaniem 2 zadań i liczę na pomoc.

Zad 1.
Oobliczyć strumień pola \(\displaystyle{ \vec{W} = [x,y,z]}\) przez powierzchnię półkuli \(\displaystyle{ x^2 + y^2 + z^2 = 9, z = 0}\).

Zad 2.
Rozwiąż równanie metodą transformaty Laplace'a:
\(\displaystyle{ \begin{cases} y' + y = 1\\y(0) = 2\end{cases}}\)

W zadaniu drugim po przekształceniach otrzymuję: \(\displaystyle{ y(x) = \alpha^{-1} [ \frac{1}{s(s - 1)}]}\) i nie wiem co dalej.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

luka52
Gość Specjalny
Gość Specjalny
Posty: 8602
Rejestracja: 1 maja 2006, o 20:54
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 47 razy
Pomógł: 1817 razy

Strumień pola wektorowego i transformata Laplace'a

Post autor: luka52 » 29 sie 2007, o 22:34

ad 1.
Zauważmy, że wartość wektora \(\displaystyle{ \vec{W}}\) w dowolnym punkcie na powierzchni półkuli jest stała i równa 3. Dodatkowo wektor ten jest prostopadły do powierzchni półkuli.
Rachunki sprowadzają się zatem do:
\(\displaystyle{ \Phi = 3 S = 3 2 \pi 3^2 = 54 \pi}\)
S to oczywiście powierzchnia półkuli.

Awatar użytkownika
Kostek
Użytkownik
Użytkownik
Posty: 115
Rejestracja: 12 lis 2005, o 19:51
Płeć: Mężczyzna
Lokalizacja: Sidzina/Kraków
Pomógł: 21 razy

Strumień pola wektorowego i transformata Laplace'a

Post autor: Kostek » 29 sie 2007, o 23:11

2.
Po transformacji rownanie ma postac:
\(\displaystyle{ sY(s)+Y(s)=\frac{1}{s}}\)
\(\displaystyle{ Y(s)=\frac{1}{s(s+1)}=\frac{1}{s}-\frac{1}{s+1}}\) i stosujac odwrotna transformate mamy \(\displaystyle{ y=1-e^{-x}+C}\) a C wyliczasz z warunku poczatkowego i jest rowne 2.

ODPOWIEDZ