najmiejsz i największa wartosc
-
- Użytkownik
- Posty: 1676
- Rejestracja: 2 kwie 2007, o 14:43
- Płeć: Mężczyzna
- Lokalizacja: warszawa
- Podziękował: 178 razy
- Pomógł: 17 razy
najmiejsz i największa wartosc
zad
Wyznacz najmniejszą i najwiekszą wartosc funkcji \(\displaystyle{ f(x)=|sinx-|x-a||}\) w przedziale (-1,1) w zalezności od paramertu a.
Wyznacz najmniejszą i najwiekszą wartosc funkcji \(\displaystyle{ f(x)=|sinx-|x-a||}\) w przedziale (-1,1) w zalezności od paramertu a.
-
- Użytkownik
- Posty: 813
- Rejestracja: 6 cze 2007, o 12:34
- Płeć: Mężczyzna
- Lokalizacja: Wrocław/Kąty Wrocławskie
- Pomógł: 206 razy
najmiejsz i największa wartosc
robin Shood, napisz wyraźnie, czy wartości z przedziału, \(\displaystyle{ 1, -1}\) są wyrażone w radianach czy w stopniach, wnioskuję, że w radianach.
-
- Użytkownik
- Posty: 1676
- Rejestracja: 2 kwie 2007, o 14:43
- Płeć: Mężczyzna
- Lokalizacja: warszawa
- Podziękował: 178 razy
- Pomógł: 17 razy
-
- Użytkownik
- Posty: 813
- Rejestracja: 6 cze 2007, o 12:34
- Płeć: Mężczyzna
- Lokalizacja: Wrocław/Kąty Wrocławskie
- Pomógł: 206 razy
-
- Użytkownik
- Posty: 1676
- Rejestracja: 2 kwie 2007, o 14:43
- Płeć: Mężczyzna
- Lokalizacja: warszawa
- Podziękował: 178 razy
- Pomógł: 17 razy
-
- Użytkownik
- Posty: 813
- Rejestracja: 6 cze 2007, o 12:34
- Płeć: Mężczyzna
- Lokalizacja: Wrocław/Kąty Wrocławskie
- Pomógł: 206 razy
najmiejsz i największa wartosc
Aby wyznaczyć największą i najmniejszą wartość funkcji \(\displaystyle{ h(x)=\mid f(x)-g(x)\mid}\) można posłużyć się metodą graficzną tzn. narysować na jednym rysunku dwa wykresy funkcji \(\displaystyle{ f(x)=sinx}\) i \(\displaystyle{ g(x)=\mid x-a\mid}\) oraz przesuwać wykres funkcji \(\displaystyle{ g(x)}\) w lewo i prawo czyli o wektor \(\displaystyle{ \vec{v}=[a, 0]}\) odpowiednio dla \(\displaystyle{ a>0}\) i \(\displaystyle{ a)}\), funkcja nie ma wartości najmniejszej i największej, bo jest tam malejąca,
\(\displaystyle{ a\in(0, -1), m=\mid \sin a\mid}\), funkcja nie ma wartości największej w tym przedziale,
\(\displaystyle{ ain[-1, )}\) funkcja \(\displaystyle{ h(x)}\) nie ma wartości ani największej, ani najmniejszej, bo jest na tym przedziale rosnąca.
[ Dodano: 5 Września 2007, 12:51 ]
można również sprawdzić wyniki w arkuszu kalkulacyjnym robiąc wykresy dla różnych \(\displaystyle{ a}\), ale Excel nie zawsze łączy wszystkie punkty prawidłowo, zwłazcza, gdy narzucimy duży krok wartości \(\displaystyle{ x}\), dla których jest tworzony wykres
\(\displaystyle{ a\in(0, -1), m=\mid \sin a\mid}\), funkcja nie ma wartości największej w tym przedziale,
\(\displaystyle{ ain[-1, )}\) funkcja \(\displaystyle{ h(x)}\) nie ma wartości ani największej, ani najmniejszej, bo jest na tym przedziale rosnąca.
[ Dodano: 5 Września 2007, 12:51 ]
można również sprawdzić wyniki w arkuszu kalkulacyjnym robiąc wykresy dla różnych \(\displaystyle{ a}\), ale Excel nie zawsze łączy wszystkie punkty prawidłowo, zwłazcza, gdy narzucimy duży krok wartości \(\displaystyle{ x}\), dla których jest tworzony wykres
-
- Użytkownik
- Posty: 1676
- Rejestracja: 2 kwie 2007, o 14:43
- Płeć: Mężczyzna
- Lokalizacja: warszawa
- Podziękował: 178 razy
- Pomógł: 17 razy
najmiejsz i największa wartosc
gdy \(\displaystyle{ a\in(-1, 0)}\) to \(\displaystyle{ m= -sin a}\) to nie jest najmniejsza wartosc wtedy?