Wartości wektory własne zadanie

Przestrzenie wektorowe, bazy, liniowa niezależność, macierze.... Formy kwadratowe, twierdzenia o klasyfikacji...
zielony789
Użytkownik
Użytkownik
Posty: 40
Rejestracja: 3 sie 2007, o 00:10
Płeć: Mężczyzna
Lokalizacja: warszawa
Podziękował: 2 razy

Wartości wektory własne zadanie

Post autor: zielony789 » 28 sie 2007, o 10:12

Dana jest macierz A={{1,-1,2},{0,3,-1},{0,0,4}}
A)Rozstrzygnij czy wektor {1,1,0} jest wektorem własnym przekształcenia o tej macierzy.
B)Wyznaczyć wszyskie wektory własne odpowiadające wartości własnej = 3
C)Rozstrzygnij czy istnieje baza przestrzeni R^3 złożona z wektorów własnych tego przekształcenia.

Proszęo rozpisanie tego zadania w sposób w miarę prosty, chcę zrozumieć jak zrobić to krok po kroku. Jeśli to możliwe zaznaczyć oddzielnie rozwiązaywanie kazdego podpunktu. Z góry dziekuję.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Amon-Ra
Gość Specjalny
Gość Specjalny
Posty: 882
Rejestracja: 16 lis 2005, o 16:51
Płeć: Mężczyzna
Lokalizacja: Tczew
Pomógł: 175 razy

Wartości wektory własne zadanie

Post autor: Amon-Ra » 28 sie 2007, o 11:01

Ten zapis macierzy zawiera między nawiasami klamrowymi zawartość kolejnych wierszy, czy kolumn?
zielony789 pisze:A)Rozstrzygnij czy wektor {1,1,0} jest wektorem własnym przekształcenia o tej macierzy.
\(\displaystyle{ Ax=\lambda x}\)

Podpowiedź: jeżeli nie istnieje taka \(\displaystyle{ \lambda}\) rzeczywista, to x nie ma prawa być wektorem własnym...
zielony789 pisze:B)Wyznaczyć wszyskie wektory własne odpowiadające wartości własnej = 3
\(\displaystyle{ Ax=3x \\ (A-3I)x=\vec{0}}\)

Rozwiąż równanie macierzowe...
zielony789 pisze:C)Rozstrzygnij czy istnieje baza przestrzeni R^3 złożona z wektorów własnych tego przekształcenia.
Wyznacz wektory własne, jeżeli będą trzy, liniowo niezależne i ortogonalne, to stanowią bazę.

zielony789
Użytkownik
Użytkownik
Posty: 40
Rejestracja: 3 sie 2007, o 00:10
Płeć: Mężczyzna
Lokalizacja: warszawa
Podziękował: 2 razy

Wartości wektory własne zadanie

Post autor: zielony789 » 28 sie 2007, o 11:08

kolejne wiersze

[ Dodano: 28 Sierpnia 2007, 11:23 ]
Jak szybko i łatwo policzyć czy są ortogonalne?

madzikzk
Użytkownik
Użytkownik
Posty: 2
Rejestracja: 28 sie 2007, o 15:59
Płeć: Kobieta
Lokalizacja: Inowrocław

Wartości wektory własne zadanie

Post autor: madzikzk » 28 sie 2007, o 17:44

wektory są ortogonalne jeżeli ich iloczyn skalarny jest równy zero
np
a=[1,2,3], b=[-3,0,1] c=[-6,0,2]

to aob=[1*-3+5*0+3*1]=0
aoc=[-6*1+2*0+3*2]=0
boc=[-3*-6+0*0+1*2]=20

to nie są wektory skalarne

ODPOWIEDZ