Obliczanie objętości

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
praptaszynka
Użytkownik
Użytkownik
Posty: 15
Rejestracja: 27 sie 2007, o 11:18
Płeć: Kobieta
Lokalizacja: wieluń

Obliczanie objętości

Post autor: praptaszynka » 27 sie 2007, o 12:01

mam problem z całkami jakby ktoś chciał mi pomóc będę wdzięczna :)
np mam zadania
luk paraboli \(\displaystyle{ y=x^2+1}\) 1 ≤x≤2 obrócono wokół osi OY. oblicz objetość powstałej bryły

łuk paraboli \(\displaystyle{ y=x^2}\) 1≤x≤2 obrócono wokół osi OY. oblicz objetość powstałej bryły.

i jeszcze jedno mam

łuk \(\displaystyle{ y=\frac{2}{x}}\) 1≤x≤2 obrócono wokół osi OY. oblicz objetość powstałej bryły.

z góry dziekuję:):)
Ostatnio zmieniony 27 sie 2007, o 12:51 przez praptaszynka, łącznie zmieniany 1 raz.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
scyth
Gość Specjalny
Gość Specjalny
Posty: 6392
Rejestracja: 23 lip 2007, o 15:26
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy
Pomógł: 1087 razy

Obliczanie objętości

Post autor: scyth » 27 sie 2007, o 13:40

Ogólnie objętość bryły obrotowej powstałej w wyniku obrotu funkcji \(\displaystyle{ f(x)}\) wokół osi \(\displaystyle{ x}\) to:
\(\displaystyle{ V = \pi t f^2(x) \ dx}\)

Wobec tego:
1. Przekształcamy, bo obracamy wokół osi OY:
\(\displaystyle{ y=x^2+1, \ x_1=1 \ x_2=2 x=\sqrt{y-1}, \ y_1=2 \ y_2=5}\)
i całkujemy:
\(\displaystyle{ \int\limits_{2}^{5} \sqrt{y-1} \ dy = ft[ \frac{2}{3} (y-1)^{\frac{3}{2}} \right]_{2}^{5} = \frac{16}{3} - \frac{2}{3} = \frac{14}{3} = 4\frac{2}{3}}\)

2. Podobnie jak to wyżej, tylko prostsze

3. Też podobnie, nie pomyl się przy przekształceniu.

praptaszynka
Użytkownik
Użytkownik
Posty: 15
Rejestracja: 27 sie 2007, o 11:18
Płeć: Kobieta
Lokalizacja: wieluń

Obliczanie objętości

Post autor: praptaszynka » 27 sie 2007, o 14:02

jejku dla mnie całki to czarna magia mozesz mi wytłumaczyć skąd wzieło się

\(\displaystyle{ \sqrt{y-1}}\) dy???

[ Dodano: 27 Sierpnia 2007, 14:04 ]
i jeszcze jedno dlaczego mamy licznik 2/3

Awatar użytkownika
scyth
Gość Specjalny
Gość Specjalny
Posty: 6392
Rejestracja: 23 lip 2007, o 15:26
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy
Pomógł: 1087 razy

Obliczanie objętości

Post autor: scyth » 27 sie 2007, o 14:20

mi wytłumaczyć skąd wzieło się

\(\displaystyle{ \sqrt{y-1} dy}\) ???
\(\displaystyle{ y=x^2+1 \Rightarrow x=\sqrt{y-1}}\) - możemy przekształcić, bo wiemy, że x > 0 i y > 1.
i jeszcze jedno dlaczego mamy licznik 2/3
To jest obliczenie całki. Dla przypomnienia (mam nadzieję):
\(\displaystyle{ \int x^t \ dx = \frac{1}{t+1} x^{t+1}}\)

ODPOWIEDZ