dziedzina szeregu funkcyjnego

Istnienie i ciągłość funkcji granicznej, jednostajna zbieżność. Zmiana kolejności przejścia granicznego. Różniczkowanie i całkowanie szeregów. Istnienie i zbieżność rozwinięć Taylora, Maclaurina, Fouriera itd.
robin5hood
Użytkownik
Użytkownik
Posty: 1676
Rejestracja: 2 kwie 2007, o 14:43
Płeć: Mężczyzna
Lokalizacja: warszawa
Podziękował: 178 razy
Pomógł: 17 razy

dziedzina szeregu funkcyjnego

Post autor: robin5hood » 27 sie 2007, o 07:47

zad
Wyznaczyć dziedzinę funkcji \(\displaystyle{ f(x)=\sum_{n=1}^{\infty}\frac{nx}{n^{2}x+2}}\)

bullay
Użytkownik
Użytkownik
Posty: 236
Rejestracja: 24 lis 2006, o 22:43
Płeć: Mężczyzna
Lokalizacja: -----
Podziękował: 1 raz
Pomógł: 26 razy

dziedzina szeregu funkcyjnego

Post autor: bullay » 27 sie 2007, o 10:21

Dziedzina funkcji jest \(\displaystyle{ R}\) bez tych wartosci dla ktorych \(\displaystyle{ n^2x+2=0}\)

Awatar użytkownika
max
Gość Specjalny
Gość Specjalny
Posty: 3306
Rejestracja: 10 gru 2005, o 17:48
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 37 razy
Pomógł: 778 razy

dziedzina szeregu funkcyjnego

Post autor: max » 27 sie 2007, o 10:23

Do tego należałoby jeszcze sprawdzić kiedy suma istnieje...
(np dla \(\displaystyle{ x > 0}\) kryterium ilorazowe z harmonicznym rozbieżnym, a dla \(\displaystyle{ x < 0}\) kryterium Leibniza)

robin5hood
Użytkownik
Użytkownik
Posty: 1676
Rejestracja: 2 kwie 2007, o 14:43
Płeć: Mężczyzna
Lokalizacja: warszawa
Podziękował: 178 razy
Pomógł: 17 razy

dziedzina szeregu funkcyjnego

Post autor: robin5hood » 27 sie 2007, o 10:47

A moze ktos to zrobic do konca?

Awatar użytkownika
max
Gość Specjalny
Gość Specjalny
Posty: 3306
Rejestracja: 10 gru 2005, o 17:48
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 37 razy
Pomógł: 778 razy

dziedzina szeregu funkcyjnego

Post autor: max » 27 sie 2007, o 14:41

Hmm, szczerze powiedziawszy to nie wiem skąd mi się ten Leibniz tam wyżej wziął, pewnie z wrodzonej bezmyślności, ale po kolei...

Aby każdy wyraz szeregu liczbowego miał sens liczbowy musi być dla każdego \(\displaystyle{ n\in \mathbb{N}}\)
\(\displaystyle{ n^{2}x + 2 \neq 0\\
x \neq -\frac{2}{n^{2}}}\)


Dalej badamy zbieżność:
Dla \(\displaystyle{ x > 0}\) a także dla \(\displaystyle{ x < 0}\) i \(\displaystyle{ n > \sqrt{\frac{2}{|x|}}}\) jest: \(\displaystyle{ \frac{nx}{n^{2}x + 2} > 0}\) oraz:
\(\displaystyle{ \lim_{n\to }\frac{\frac{1}{n}}{\frac{nx}{n^{2}x + 2}} = \lim_{n\to\infty}\left(1 + \frac{2}{n^{2}x}\right) = 1}\)
granica jest skończona i dodatnia, a szereg o wyrazie ogólnym \(\displaystyle{ \frac{1}{n}}\) rozbieżny, więc w myśl kryterium ilorazowego zbieżności szeregów nasz szereg jest dla \(\displaystyle{ x 0}\) rozbieżny. W związku z tym, ponieważ dla \(\displaystyle{ x = 0}\) szereg jest oczywiście zbieżny, to dziedziną funkcji \(\displaystyle{ f}\) jest jednoelementowy zbiór \(\displaystyle{ \{0\}}\).

Przepraszam za zamieszanie.

ODPOWIEDZ