wyznacz dziedzinę

Od funkcji homograficznych do bardziej skomplikowanych ilorazów wielomianów. Własności. RÓWNANIA I NIERÓWNOŚCI.
revage
Użytkownik
Użytkownik
Posty: 150
Rejestracja: 9 sie 2015, o 11:45
Płeć: Kobieta
Lokalizacja: Polska
Podziękował: 15 razy

wyznacz dziedzinę

Post autor: revage » 20 lut 2016, o 12:56

Wyznacza dziedzinę
\(\displaystyle{ \sqrt{ \frac{x+1}{x} }}\)

Ja tak to zrobiłam, ale wychodzi mi źle, w odp. Jest inaczej

\(\displaystyle{ \frac{ \sqrt{x+1} }{ \sqrt{x} }}\)
\(\displaystyle{ x+1 \ge 0 \wedge x>0}\)
Ostatnio zmieniony 20 lut 2016, o 18:02 przez Afish, łącznie zmieniany 1 raz.
Powód: Poprawa wiadomości.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
kropka+
Użytkownik
Użytkownik
Posty: 4389
Rejestracja: 16 wrz 2010, o 14:54
Płeć: Kobieta
Lokalizacja: Łódź
Podziękował: 1 raz
Pomógł: 787 razy

wyznacz dziedzinę

Post autor: kropka+ » 20 lut 2016, o 12:59

Nie przekształcaj. Licznik nieujemny i mianownik dodatni lub licznik i mianownik ujemne

revage
Użytkownik
Użytkownik
Posty: 150
Rejestracja: 9 sie 2015, o 11:45
Płeć: Kobieta
Lokalizacja: Polska
Podziękował: 15 razy

wyznacz dziedzinę

Post autor: revage » 20 lut 2016, o 13:23

A czemu mój sposob jest zły?

Awatar użytkownika
pawlo392
Użytkownik
Użytkownik
Posty: 1067
Rejestracja: 19 sty 2015, o 18:10
Płeć: Mężczyzna
Lokalizacja: Jasło/Kraków
Podziękował: 264 razy
Pomógł: 34 razy

wyznacz dziedzinę

Post autor: pawlo392 » 20 lut 2016, o 13:30

Całe wyrażenie podpierwiastkowe musi być większe lub równe zeru.

Awatar użytkownika
Poszukujaca
Użytkownik
Użytkownik
Posty: 2775
Rejestracja: 21 maja 2012, o 23:32
Płeć: Kobieta
Podziękował: 1019 razy
Pomógł: 165 razy

wyznacz dziedzinę

Post autor: Poszukujaca » 20 lut 2016, o 13:45

Nie możesz skorzystać z równości \(\displaystyle{ \sqrt{\frac{a}{b}}= \frac{\sqrt{a}}{\sqrt{b}}}\) przy wyznaczaniu dziedziny, ponieważ funkcje \(\displaystyle{ f(x) = \sqrt{ \frac{x+1}{x} }}\) i \(\displaystyle{ g(x) = \frac{\sqrt{x+1}}{\sqrt{x}}}\) nie są równe, ponieważ mają inną dziedzinę.

ODPOWIEDZ