podwójna czy potrójna

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
joannna
Użytkownik
Użytkownik
Posty: 60
Rejestracja: 14 sie 2007, o 12:57
Płeć: Kobieta
Lokalizacja: Warszawa
Podziękował: 25 razy

podwójna czy potrójna

Post autor: joannna » 22 sie 2007, o 14:22

obliczyć pole powierzchni \(\displaystyle{ 2-z=\frac{1}{2}(x^{2}+y^{2})}\)
zawartej między płaszczyznami z=1 i z=3/2 i mam pytanko czy obliczam podwojna calka tyle ze z polem powierzchni roznicy tych dwoch kół ktore powstają
i czy jesli tak to pole tego wycinka obliczam z ds czyli z tego wzoru gdzie jest z pochodnymi z czastkowymi czy mozna jakos prosciej
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

luka52
Gość Specjalny
Gość Specjalny
Posty: 8602
Rejestracja: 1 maja 2006, o 20:54
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 47 razy
Pomógł: 1817 razy

podwójna czy potrójna

Post autor: luka52 » 22 sie 2007, o 14:32

Po pierwsze w takich przypadkach w celu obliczenia pola, stosuje się całkę powierzchniową niezorientowaną, przy czym oczywiście funkcja podcałkowa jest tożsamościowo równa 1. "Czyli tą podwójną z dS" To że masz podane, pomiędzy jakimi płaszczyznami znajduje się ta paraboloida wskazuje jednoznacznie na granice całkowania - po zamianie całki pow. na zwykłą podwójną obszarem całkowania (o ile się nie mylę), będzie pierścień.

joannna
Użytkownik
Użytkownik
Posty: 60
Rejestracja: 14 sie 2007, o 12:57
Płeć: Kobieta
Lokalizacja: Warszawa
Podziękował: 25 razy

podwójna czy potrójna

Post autor: joannna » 22 sie 2007, o 14:54

czyli ds wychodzi mi pierwiastek z 1+r tak czyli dalej jak mam rozpisac te całke czy moze r bedzie od 1 do\(\displaystyle{ /sgrt{2}}\) a kat od o do 2pi ale cos dziwnego wychodzi z tych współrzędnych biegunowych

luka52
Gość Specjalny
Gość Specjalny
Posty: 8602
Rejestracja: 1 maja 2006, o 20:54
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 47 razy
Pomógł: 1817 razy

podwójna czy potrójna

Post autor: luka52 » 22 sie 2007, o 15:06

Ale po kolei.
Najpierw mamy \(\displaystyle{ \iint \sqrt{1 + z'_x^2 + z'_y^2} \, dxdy = \iint \sqrt{1 + x^2 + y^2} \, dxdy}\)
Po przejściu na wsp. biegunowe i uwzględnieniu granic \(\displaystyle{ \int\limits_0^{2 \pi} \, \mbox{d}\theta t\limits_{1}^{\sqrt{2}} \rho \sqrt{1 + \rho^2} \, \mbox{d} \rho}\)

joannna
Użytkownik
Użytkownik
Posty: 60
Rejestracja: 14 sie 2007, o 12:57
Płeć: Kobieta
Lokalizacja: Warszawa
Podziękował: 25 razy

podwójna czy potrójna

Post autor: joannna » 22 sie 2007, o 15:13

dzieki tak wlasnie mialam tylko zamiast r to r kwadrat powinno byc a pozniej przez podstawienie obliczam calke dzieki

[ Dodano: 22 Sierpnia 2007, 15:23 ]
i powiedz mi czy to jest dobry wynik \(\displaystyle{ 2pi(sgrt{27}-sgrt{8})}\)

ODPOWIEDZ