Objętość bryły na całkach

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
Mr Max
Użytkownik
Użytkownik
Posty: 19
Rejestracja: 21 sie 2007, o 12:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 5 razy

Objętość bryły na całkach

Post autor: Mr Max » 22 sie 2007, o 13:33

Mam takie zadanko i z tego co się domyślam to chyba to jakoś na całkach trzeba policzyć:

Obliczyć objętość bryły \(\displaystyle{ V}\) ograniczonej przez stożek \(\displaystyle{ z=3-\sqrt{x^2+y^2}}\) , walec \(\displaystyle{ x^2+y^2=4}\) oraz płaszczyznę \(\displaystyle{ z=0}\)

Mógłby ktoś pomóc to rozwiązać?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

joannna
Użytkownik
Użytkownik
Posty: 60
Rejestracja: 14 sie 2007, o 12:57
Płeć: Kobieta
Lokalizacja: Warszawa
Podziękował: 25 razy

Objętość bryły na całkach

Post autor: joannna » 22 sie 2007, o 13:48

najlepiej jakby ktos mnie sprawdził ale mysle ze mozna zrobic tak i zapisac to całką
\(\displaystyle{ \int_{2}^{3}\int_{0}^{2\pi}\int_{0}^{3}rdrdzd\varphi}\)
co o tym myślisz

[ Dodano: 22 Sierpnia 2007, 13:51 ]
i wyjdzie po obliczeniach 3pi ale czy komus tez tak wyszło bo mi sie zdaje ze dobrze

Mr Max
Użytkownik
Użytkownik
Posty: 19
Rejestracja: 21 sie 2007, o 12:12
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 5 razy

Objętość bryły na całkach

Post autor: Mr Max » 22 sie 2007, o 15:41

ja w ogóle się w tym zadaniu nie orientuje, co sie z czego bralo, skąd te przedzialy, umie to ktos policzyc ?

luka52
Gość Specjalny
Gość Specjalny
Posty: 8602
Rejestracja: 1 maja 2006, o 20:54
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 47 razy
Pomógł: 1817 razy

Objętość bryły na całkach

Post autor: luka52 » 22 sie 2007, o 16:03

Całka powinna wyglądać:
\(\displaystyle{ \int\limits_0^{2 \pi} \, \mbox{d} \theta t\limits_0^2 \rho \, \mbox{d}\rho t\limits_0^{3 - |\rho|} \, \mbox{d}z}\)
Jest to już całka po zamianie współrzędnych na współrzędne walcowe (cylindryczne).
Pierwsze dwie całki pochodzą z tego, że rzutem na płaszczyzną OXY danej bryły jest koło o promieniu 2 i środku w (0,0). Ostatnia natomiast pochodzi z zakresu zmiany z - od 0 do powierzchni stożka.

Wynik to \(\displaystyle{ \frac{20 \pi}{3}}\).

Awatar użytkownika
Nty
Użytkownik
Użytkownik
Posty: 66
Rejestracja: 26 maja 2007, o 23:55
Płeć: Mężczyzna
Lokalizacja: Dąbrowa Górnicza
Pomógł: 24 razy

Objętość bryły na całkach

Post autor: Nty » 23 sie 2007, o 15:01

luka52 pisze:Całka powinna wyglądać:
\(\displaystyle{ \int\limits_0^{3 - |\rho|}}\)
Taka mała uwaga, promień \(\displaystyle{ \rho}\) jest zawsze dodatni ( \(\displaystyle{ \rho (0,\infty)}\) ), więc modół jest zbędny. To taka drobna korekta, która co prawda niczego nie zmieni, ale dla autora tematu może być cenna.

ODPOWIEDZ