Pierwiastki n stopnia z wielomianu stopnia k

Definicja. Postać wykładnicza i trygonometryczna. Zagadnienia związane z ciałem liczb zespolonych.
magicstyle
Użytkownik
Użytkownik
Posty: 13
Rejestracja: 6 kwie 2006, o 19:11
Płeć: Mężczyzna
Lokalizacja: Łódź

Pierwiastki n stopnia z wielomianu stopnia k

Post autor: magicstyle » 21 sie 2007, o 18:26

Witajcie mam pytanie do pierwiastka n stopnia jezeli liczba zespolona jest podniesiona do k-tej potegi:

Dla przykładu \(\displaystyle{ z=(1+i)^{20}}\) i policzyc z tego pierwiastek 3-stopnia

Czy aby to policzyc nalezy skorzystac z wzoru Movier'a sprowadzając to do postaci trygonometrycznej a pozniej kozystajac z wzoru na pierwiastki n tego stopnia?

Czy też moze jest jakis inny sposob na to?

Zamieszczam tutaj jak ja to rozwiazalem jesli jest tam blad to wskazcie w ktorym miejscu albo wrzuccie swoje rozwiazanie.

\(\displaystyle{ |z|=\sqrt{2}}\)
\(\displaystyle{ \cos\varphi=\frac{\sqrt{2}}{2}}\)
\(\displaystyle{ \sin\varphi=\frac{\sqrt{2}}{2}}\)
\(\displaystyle{ \varphi=\frac{\pi}{4}}\)

\(\displaystyle{ \sqrt{2}^{20}(\cos20\frac{\pi}{4}+isin20\frac{\pi}{4}={2}^{10}(\cos5\pi+isin5\pi)=2^{10}(\cos\pi+isin\pi)}\)

I teraz pierwiastek 3-stopnia:
\(\displaystyle{ z_{0}=...}\)
\(\displaystyle{ z_{1}=...}\)
\(\displaystyle{ z_{2}=\sqrt[3]{2^{10}}(\cos\frac{\pi+2*2\pi}{3}+i\sin\frac{\pi+2*2\pi}{3})}\)
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

trzmiel
Użytkownik
Użytkownik
Posty: 7
Rejestracja: 2 mar 2007, o 23:10
Płeć: Mężczyzna
Lokalizacja: byd

Pierwiastki n stopnia z wielomianu stopnia k

Post autor: trzmiel » 21 sie 2007, o 22:02

Na liczbach zespolonych dokładnie sięnie znam,ale:
\(\displaystyle{ (i+1)^{4} = -4 \\zatem\\ \sqrt[3](1+i)^{20}= -4^{5/3}}\)


Nie wiem czy o oto chodziło, może się przda komuś

Awatar użytkownika
Emiel Regis
Gość Specjalny
Gość Specjalny
Posty: 1495
Rejestracja: 26 wrz 2005, o 17:01
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 71 razy
Pomógł: 225 razy

Pierwiastki n stopnia z wielomianu stopnia k

Post autor: Emiel Regis » 21 sie 2007, o 22:22

magicstyle, poprawne rozwiązanie.

ODPOWIEDZ