Długości boków trójkąta

Dział całkowicie poświęcony zagadnieniom związanymi z trójkątami. Temu co się w nie wpisuje i na nich opisuje - też...
NuLLsKiLL
Użytkownik
Użytkownik
Posty: 55
Rejestracja: 16 sie 2007, o 10:07
Płeć: Mężczyzna
Lokalizacja: Nicość
Podziękował: 24 razy
Pomógł: 1 raz

Długości boków trójkąta

Post autor: NuLLsKiLL » 21 sie 2007, o 13:33

Długości boków w trójkącie są kolejnymi liczbami naturalnymi, a największy kąt w tym trójkącie jest dwa razy największy od najmniejszego. Wyznacz długości boków tego trójkąta.

Chciałem rozwalić to zadanie twierdzeniem cosinusów i otrzymałem:
\(\displaystyle{ cos\alpha=\frac{x+5}{x+2}}\)
\(\displaystyle{ cos2\alpha=\frac{x-3}{2x}}\)
Tylko, że dalej to już nie wiem co z tym zrobić. Jakiś pomysł?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
Tristan
Gość Specjalny
Gość Specjalny
Posty: 2357
Rejestracja: 24 kwie 2005, o 14:28
Płeć: Mężczyzna
Podziękował: 27 razy
Pomógł: 556 razy

Długości boków trójkąta

Post autor: Tristan » 21 sie 2007, o 21:53

Mógłbyś napisać jak doszedłeś do tych wyników? Niestety z nich nie dostaniesz żadnego naturalnego x, więc pewnie są błędne. Ja również wyliczyłem \(\displaystyle{ \cos , \cos 2 }\) ale również z moich wyników nie dostaję rezultatów naturalnych, więc może gdzieś mam błąd. Tak czy inaczej chciałbym przeczytać Twoje rozumowanie.

NuLLsKiLL
Użytkownik
Użytkownik
Posty: 55
Rejestracja: 16 sie 2007, o 10:07
Płeć: Mężczyzna
Lokalizacja: Nicość
Podziękował: 24 razy
Pomógł: 1 raz

Długości boków trójkąta

Post autor: NuLLsKiLL » 22 sie 2007, o 00:04

Przede wszystkim zrobiłem rysunek:

Czerwony to kąt \(\displaystyle{ \alpha}\), a niebieski \(\displaystyle{ 2\alpha}\). Rysunek powinien być prawidłowy gdyż najmniejszy kąt jest zawarty między dłuższymi bokami, a największy kąt między krótszymi bokami. No i na podstawie tego rysunku wyliczyłem wartości cosinusów (z twierzenia cosinusów) dla obu kątów i otrzymałem podane w temacie wartości.

Awatar użytkownika
Tristan
Gość Specjalny
Gość Specjalny
Posty: 2357
Rejestracja: 24 kwie 2005, o 14:28
Płeć: Mężczyzna
Podziękował: 27 razy
Pomógł: 556 razy

Długości boków trójkąta

Post autor: Tristan » 22 sie 2007, o 01:39

Mam podobny rysunek i dlatego właśnie zastanawiają mnie Twoje wyniki. Z twierdzenia Carnota mamy, że \(\displaystyle{ x^2=(x+1)^2+(x+2)^2 - 2(x+1)(x+2) \cos }\), skąd: \(\displaystyle{ \cos =\frac{ x^2+6x+5}{2(x+1)(x+2)}= \frac{ x+5}{2(x+1)}}\)
\(\displaystyle{ \cos 2 = \frac{x-3}{2x}}\)
Teraz korzystając z tożsamości \(\displaystyle{ \cos 2 = 2 \cos^2 - 1}\) otrzymujemy równanie \(\displaystyle{ \frac{ x-3}{2x} = 2 ( \frac{ x+5}{2x+4})^2 -1}\) które przekształcamy do postaci \(\displaystyle{ 2x^3 -x^2 - 25x-12=0}\), a stąd jedynym naturalnym pierwiastkiem jest \(\displaystyle{ x=4}\) co kończy nasze rozwiązanie. Wsześniej właśnie w przekształceniach dostałem inne równanie i żaden pierwiastek nie był naturalny, co mnie zastanawiało. Na szczęście znalazłem błąd i jest teraz dobrze

NuLLsKiLL
Użytkownik
Użytkownik
Posty: 55
Rejestracja: 16 sie 2007, o 10:07
Płeć: Mężczyzna
Lokalizacja: Nicość
Podziękował: 24 razy
Pomógł: 1 raz

Długości boków trójkąta

Post autor: NuLLsKiLL » 22 sie 2007, o 10:03

Zgadzam sięz Twoim rozwiązaniem, przeanalizowałem je dokładnie. Rzeczywiście miałem błąd. No to punkcik dla Ciebie. pzdr

ODPOWIEDZ