co powstanie za bryła

Całkowalność. Metody i obliczanie całek oznaczonych i nieoznaczonych. Pole pod wykresem. Równania i nierówności z wykorzystaniem rachunku całkowego. Wielowymiarowa całka Riemanna - w tym pola i objętości figur przestrzennych.
joannna
Użytkownik
Użytkownik
Posty: 60
Rejestracja: 14 sie 2007, o 12:57
Płeć: Kobieta
Lokalizacja: Warszawa
Podziękował: 25 razy

co powstanie za bryła

Post autor: joannna » 20 sie 2007, o 22:13

dokładnie to chodzi mi o to co to jest za bryła podejrzewam ze to stożek ale jaki sposób na jego wyznaczenie i jak wyznaczyc płaszczyzne ktora bedzie tworzyła bryłe z paraboloida o równaniu podanym niżej
\(\displaystyle{ z - (x^2 + y^2)^{\frac{1}{2}} qslant 0 \ \ \mbox{oraz} \ \ x^2 + y^2 + z qslant 0}\)

Poprawiłem nieco zapis. luka52
Ostatnio zmieniony 20 sie 2007, o 22:25 przez joannna, łącznie zmieniany 1 raz.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

luka52
Gość Specjalny
Gość Specjalny
Posty: 8602
Rejestracja: 1 maja 2006, o 20:54
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 47 razy
Pomógł: 1817 razy

co powstanie za bryła

Post autor: luka52 » 20 sie 2007, o 22:27

Pierwsza bryła to stożek http://pl.wikipedia.org/wiki/Stożek_(geometria)
A druga to paraboloida obrotowa, ale z "wypełnieniem" (bo sama paraboloida obrotowa to powierzchnia) http://pl.wikipedia.org/wiki/Paraboloida_obrotowa

Na stronach wikipedii podane są równania tych "tworów"

joannna
Użytkownik
Użytkownik
Posty: 60
Rejestracja: 14 sie 2007, o 12:57
Płeć: Kobieta
Lokalizacja: Warszawa
Podziękował: 25 razy

co powstanie za bryła

Post autor: joannna » 20 sie 2007, o 22:47

a jak narysowac takie paraboloidy czym różnią sie od tamtej wiem ze przecinaja sie dla z=2 tak i co wtedy robie jak znajde promien okręgu\(\displaystyle{ x^2 + y^2-3z^2 qslant 0 \ \ \mbox{oraz} \ \ x^2 + y^2 + z^{2} qslant 16}\)

luka52
Gość Specjalny
Gość Specjalny
Posty: 8602
Rejestracja: 1 maja 2006, o 20:54
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 47 razy
Pomógł: 1817 razy

co powstanie za bryła

Post autor: luka52 » 20 sie 2007, o 22:57

Paraboloidę \(\displaystyle{ z = - x^2 - y^2}\) można bardzo łatwo narysować - rysujemy zwykłą parabolę \(\displaystyle{ z = -x^2}\) (ale tylko na płaszczyźnie OXZ) i obracamy ją wokół osi OZ.

Następnie - \(\displaystyle{ x^2 + y^2 - 3z^2 = 0 z = \sqrt{\frac{x^2 + y^2}{3}}}\) tutaj mamy stożek, a dokładnie dwa. Narysuj na płaszczyźnie OXZ krzywą \(\displaystyle{ z = \frac{|x|}{\sqrt{3}}}\) i obróć wokół osi OZ.

\(\displaystyle{ x^2 + y^2 + z^2 q 4^2}\) - zwykła sfera o środku w początku układu współrzędnych i promieniu 4.

joannna
Użytkownik
Użytkownik
Posty: 60
Rejestracja: 14 sie 2007, o 12:57
Płeć: Kobieta
Lokalizacja: Warszawa
Podziękował: 25 razy

co powstanie za bryła

Post autor: joannna » 20 sie 2007, o 23:13

dzieki juz mi sie przejasnia tylko jeszcze nie wiem jak beda wygladac te powierzchnie bo potem juz mi sie powtarzaja w zad tylko tych nie jestem jeszcze pewna\(\displaystyle{ (9-x^2 -y^2)^{\frac{1}{2}} qslant z \ \ \mbox{oraz} \ \ (3x^2 + 3y^2 )^{\frac{1}{2}}\leqslant z}\)

luka52
Gość Specjalny
Gość Specjalny
Posty: 8602
Rejestracja: 1 maja 2006, o 20:54
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 47 razy
Pomógł: 1817 razy

co powstanie za bryła

Post autor: luka52 » 20 sie 2007, o 23:29

Pierwsza bryła, to połówka kuli (górna):
\(\displaystyle{ 3^2 q z^2 + y^2 + x^2}\)
Czyli środek kuli, to (0,0,0) i promień to 3.

A druga bryła to po prostu stożek \(\displaystyle{ z q \sqrt{3} \sqrt{x^2 + y^2}}\)

ODPOWIEDZ