Zadanie maturalne z wielomianem. Nie jasna kwestia...

Własności wielomianów; pierwiastki, współczynniki. Dzielenie wielomianów. Wzory Viete'a. RÓWNANIA I NIERÓWNOŚCI wielomianowe (wyższych stopni). Rozkład na czynniki.
Gambit
Użytkownik
Użytkownik
Posty: 123
Rejestracja: 8 wrz 2004, o 22:17
Płeć: Mężczyzna
Lokalizacja: Łowicz
Podziękował: 2 razy

Zadanie maturalne z wielomianem. Nie jasna kwestia...

Post autor: Gambit » 10 sie 2007, o 18:42

Witam,
na tegorocznej maturze było następujące zadanie:
Przedstaw wielomian \(\displaystyle{ W(x)=x^4-2x^3-3x^2+4x-1}\) w postaci iloczynu dwóch wielomianów stopnia drugiego o współczynnikach całkowitych i takich, że współczynniki przy drugich potęgach są równe jeden.
Rozwiązanie, które zasugerowane jest w sprawozdaniu z matury to zapisanie danego wielomianu w postaci iloczynu dwóch wielomianów stopnia drugiego takich, że współczynniki przy drugich potęgach są równe jeden:
\(\displaystyle{ W(x)=(x^2 + ax + b)(x^2 +cx+d)=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd=x^4+(a+c)x^3+(d+ac+b)x^2+(ad+bc)x+bd}\)
a następnie porównanie współczynników powyższego wielomianu z wielomianem z treści zadania, przy stwierdzeniu, że skoro \(\displaystyle{ bd=-1}\) to b i d muszą być liczbami różnych znaków, np. \(\displaystyle{ b=1; d=-1}\) (lub \(\displaystyle{ b=1; d=-1}\)) [...]
Przechodząc do sedna sprawy, dlaczego nie ma znaczenia czy przyjmiemy, że \(\displaystyle{ b=1; d=-1}\) czy też, że \(\displaystyle{ b=1; d=-1}\)? Kiedy miałoby to znaczenie (powodowałoby błędny wynik jeśli wybralibyśmy złą opcję)? W jakich sytuacjach (podobnych lub nie) zamiana wartości parametrów nie zepsuje nam wyniku?

Pozdrawiam,
Gambit
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

alef_0
Użytkownik
Użytkownik
Posty: 12
Rejestracja: 8 sie 2007, o 13:15
Płeć: Mężczyzna
Lokalizacja: Żywiec/Gliwice

Zadanie maturalne z wielomianem. Nie jasna kwestia...

Post autor: alef_0 » 10 sie 2007, o 20:10

nie ma znaczenia bo mnożenie jest przemienne

luka52
Gość Specjalny
Gość Specjalny
Posty: 8602
Rejestracja: 1 maja 2006, o 20:54
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 47 razy
Pomógł: 1817 razy

Zadanie maturalne z wielomianem. Nie jasna kwestia...

Post autor: luka52 » 10 sie 2007, o 20:22

Jeżeli b=1 i d=-1, to wtedy będzie:
\(\displaystyle{ W(x) = (x^2 - 3x + 1)(x^2 + x -1)}\)
Natomiast gdy b=-1 i d=1, to:
\(\displaystyle{ W(x) = (x^2 + x - 1)(x^2 - 3x +1)}\)
Oba te przypadki prowadzą do tego samego wyniku.

Gambit
Użytkownik
Użytkownik
Posty: 123
Rejestracja: 8 wrz 2004, o 22:17
Płeć: Mężczyzna
Lokalizacja: Łowicz
Podziękował: 2 razy

Zadanie maturalne z wielomianem. Nie jasna kwestia...

Post autor: Gambit » 11 sie 2007, o 14:15

alef_0 pisze:nie ma znaczenia bo mnożenie jest przemienne
No co Ty...
luka52 pisze:Jeżeli b=1 i d=-1, to wtedy będzie:
\(\displaystyle{ W(x) = (x^2 - 3x + 1)(x^2 + x -1)}\)
Natomiast gdy b=-1 i d=1, to:
\(\displaystyle{ W(x) = (x^2 + x - 1)(x^2 - 3x +1)}\)
Oba te przypadki prowadzą do tego samego wyniku.
A skąd mam wiedzieć bez sprawdzania czy oba przypadki w innych, podobnych sytuacjach dają ten sam wynik? Da się w ogóle wywnioskować to bez weryfikacji?

Awatar użytkownika
max
Gość Specjalny
Gość Specjalny
Posty: 3306
Rejestracja: 10 gru 2005, o 17:48
Płeć: Mężczyzna
Lokalizacja: Lebendigentanz
Podziękował: 37 razy
Pomógł: 778 razy

Zadanie maturalne z wielomianem. Nie jasna kwestia...

Post autor: max » 13 sie 2007, o 19:35

\(\displaystyle{ \begin{cases} a + c = -2 \\ ac = -3 \\ c - a = 4\end{cases}\\
\begin{cases} a + c = -2 \\ ac = -3 \\ a - c = 4\end{cases}}\)

Teraz pomyśl czym różnią się te układy równań i czym będą różnić się wyniki...

sztuczne zęby
Użytkownik
Użytkownik
Posty: 623
Rejestracja: 24 maja 2006, o 17:52
Płeć: Mężczyzna
Lokalizacja: ..
Podziękował: 4 razy
Pomógł: 110 razy

Zadanie maturalne z wielomianem. Nie jasna kwestia...

Post autor: sztuczne zęby » 14 sie 2007, o 11:29

Zawsze, jak się nie ma pewności można rozważyć oba przypadki i dojśc do wniosku, że dają ten sam wynik. To nie zajmuję tak wiele czasu.

Gambit
Użytkownik
Użytkownik
Posty: 123
Rejestracja: 8 wrz 2004, o 22:17
Płeć: Mężczyzna
Lokalizacja: Łowicz
Podziękował: 2 razy

Zadanie maturalne z wielomianem. Nie jasna kwestia...

Post autor: Gambit » 15 sie 2007, o 17:14

Dzięki wszystkim za pomoc! Najbardziej satysfakcjonującą dla mnie odpowiedź dał szuczne zęby (+1 pomoc) W takich sytuacjach będę zawsze sprawdzał oba przypadki.

ODPOWIEDZ