parametr k

Zagadnienia dot. funkcji kwadratowej. RÓWNANIA I NIERÓWNOŚCI kwadratowe i pierwiastkowe. Układy równań stopnia 2.
K4rol
Użytkownik
Użytkownik
Posty: 301
Rejestracja: 18 cze 2007, o 22:01
Płeć: Mężczyzna
Lokalizacja: Elbląg
Podziękował: 6 razy
Pomógł: 7 razy

parametr k

Post autor: K4rol » 1 sie 2007, o 13:39

znajdź wartość k aby równanie miało dwa różne pierwiastki
\(\displaystyle{ x^{2}+(k-3)x-1=0\\
\Delta>0\\
b^{2}-4ac>0\\
(k-3)^{2}-4\cdot1\cdot(-1)>0\\
k^{2}-6k+9+4>0\\
k^{2}-6k+13>0\\
\Delta=36-52}\)


co dalej?
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

Awatar użytkownika
scyth
Gość Specjalny
Gość Specjalny
Posty: 6392
Rejestracja: 23 lip 2007, o 15:26
Płeć: Mężczyzna
Lokalizacja: Warszawa
Podziękował: 3 razy
Pomógł: 1087 razy

parametr k

Post autor: scyth » 1 sie 2007, o 13:48

ostatnie równanie nie ma pierwiastków, co oznacza, że dla każdego k \(\displaystyle{ \Delta > 0}\) i wyjściowe równanie ma dwa różne pierwiastki.

Ogólnie dla równania \(\displaystyle{ x^2+ax-b=0, \ b \ge 0, \ a \ne 0}\) mamy \(\displaystyle{ \Delta=a^2+4b >0}\), a więc zawsze dwa pierwiastki.
Ostatnio zmieniony 1 sie 2007, o 13:53 przez scyth, łącznie zmieniany 2 razy.

K4rol
Użytkownik
Użytkownik
Posty: 301
Rejestracja: 18 cze 2007, o 22:01
Płeć: Mężczyzna
Lokalizacja: Elbląg
Podziękował: 6 razy
Pomógł: 7 razy

parametr k

Post autor: K4rol » 1 sie 2007, o 13:51

aha czyli
\(\displaystyle{ x R}\)
?

Awatar użytkownika
Plant
Użytkownik
Użytkownik
Posty: 331
Rejestracja: 16 sty 2006, o 21:30
Płeć: Mężczyzna
Lokalizacja: Grudziadz/Warszawa
Pomógł: 70 razy

parametr k

Post autor: Plant » 1 sie 2007, o 13:53

\(\displaystyle{ \Delta_2=36-52=-16}\)
Czyli \(\displaystyle{ \Delta_1}\) zawsze większa od zera.

[ Dodano: 1 Sierpnia 2007, 14:56 ]
\(\displaystyle{ x R}\), ale odpowiedzią jest \(\displaystyle{ k\in R}\)

Awatar użytkownika
JHN
Użytkownik
Użytkownik
Posty: 562
Rejestracja: 8 lip 2007, o 18:09
Płeć: Mężczyzna
Lokalizacja: Radom
Podziękował: 5 razy
Pomógł: 170 razy

parametr k

Post autor: JHN » 1 sie 2007, o 21:58

K4rol pisze:...\(\displaystyle{ \Delta>0...}\)
Czyli:
\(\displaystyle{ \Delta=(k-3)^{2}-4\cdot1\cdot(-1)=(k-3)^{2}+4\ge 0+4>0\textrm{ dla kazdego }k\in \mathbb{R}}\)

Pozdrawiam

K4rol
Użytkownik
Użytkownik
Posty: 301
Rejestracja: 18 cze 2007, o 22:01
Płeć: Mężczyzna
Lokalizacja: Elbląg
Podziękował: 6 razy
Pomógł: 7 razy

parametr k

Post autor: K4rol » 3 sie 2007, o 13:21

określ liczbę pierwiastków w zależności od k
\(\displaystyle{ (k^{2}-1)x^{2}-(k+1)x -0,5=0\\
\Delta=b^{2}-4ac=(k+1)^{2}-4(k^{2}-1)(-0,5)=k^{2}+2k+1-4(-0,5k^{2}+0,5)=k^{2}+2k+1+2k^{2}-2=3k^{2}+2k-1\\
k\neq 1\wedge \ k\neq -1}\)

1.
\(\displaystyle{ \Delta \ < \ 0\\
3k^{2}+2k-1 \ 0\\
3k^{2}+2k-1>0\\
k_{1}=\frac{1}{3} \wedge \ k_{2}=-1\\
k \in (-\infty;-1>\wedge \ (\frac{1}{3};+\infty)}\)

a tu jest odp.
\(\displaystyle{ k (-\infty;-1) \cup (\frac{1}{3};1) \cup (1;+\infty)}\)

Rothman
Użytkownik
Użytkownik
Posty: 34
Rejestracja: 29 paź 2005, o 14:05
Płeć: Mężczyzna
Lokalizacja: Strzegom
Podziękował: 4 razy

parametr k

Post autor: Rothman » 3 sie 2007, o 14:55

Na początku sprawdzamy, dla jakich \(\displaystyle{ k}\) mamy do czynienia z równanie kwadratowym. Nietrudno zauważyć, że gdy \(\displaystyle{ k {-1;-1}}\), to nie jest to równanie kwadratowe, zatem nie ma rozwiązań. Potem liczyłeś poprawnie: \(\displaystyle{ \frac{1}{3}}\) jest pierwiastkiem, więc w tym miejscu mamy jedno rozwiązanie (drugi pierwiastek, z racji tego co wcześniej napisałem, odpada). Poprawnie policzyłeś przedział, w którym nie ma rozwiązań. Zatem poprawna odpowiedź:

0 rozwiązań: \(\displaystyle{ k {\frac{1}{3}}}\)

W pozostałych przedziałach 2 rozwiązania.

K4rol
Użytkownik
Użytkownik
Posty: 301
Rejestracja: 18 cze 2007, o 22:01
Płeć: Mężczyzna
Lokalizacja: Elbląg
Podziękował: 6 razy
Pomógł: 7 razy

parametr k

Post autor: K4rol » 3 sie 2007, o 14:59

znaczy się:
\(\displaystyle{ k\in }\)

ODPOWIEDZ