Rozwiąż równania

Różniczkowalność, pochodna funkcji. Przebieg zmienności. Zadania optymalizacyjne. Równania i nierówności z wykorzystaniem rachunku różniczkowego.
jeremi18
Użytkownik
Użytkownik
Posty: 16
Rejestracja: 21 lip 2007, o 11:58
Płeć: Mężczyzna
Lokalizacja: Puławy
Podziękował: 4 razy

Rozwiąż równania

Post autor: jeremi18 » 31 lip 2007, o 14:12

\(\displaystyle{ 2y"-3y'+y=x^{2}+2}\)

\(\displaystyle{ y"-5y'+6y=x^{2}-x}\)

Poprawiłem zapis. luka52
Ostatnio zmieniony 31 lip 2007, o 14:59 przez jeremi18, łącznie zmieniany 2 razy.
Rekrutacja Instytut Matematyczny, Uniwersytet Wrocławski (gif)

luka52
Gość Specjalny
Gość Specjalny
Posty: 8602
Rejestracja: 1 maja 2006, o 20:54
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 47 razy
Pomógł: 1817 razy

Rozwiąż równania

Post autor: luka52 » 31 lip 2007, o 14:33

ad 1.
Układamy równanie charakterystyczne równania jednorodnego:
\(\displaystyle{ 2r^2 - 3r + 1 = 0}\)
Pierwiastkami tego równania są \(\displaystyle{ r_1 = \frac{1}{2}, \quad r_2 = 1}\)
Mamy zatem:
\(\displaystyle{ y_1 = A e^x + B e^{x/2}}\)
Jako całkę szczególną przewidujemy wyrażenie postaci:
\(\displaystyle{ y_2 = ax^2 + bx + c}\)
Podstawiając powyższe do równania, otrzymujemy, że \(\displaystyle{ a = 1, \ \ b = 6, \ \ c = 16}\)
Zatem rozwiązaniem równania jest:
\(\displaystyle{ y = y_1 + y_2 = A e^x + B e^{x/2} + x^2 + 6x + 16}\)

2) analogicznie.

jeremi18
Użytkownik
Użytkownik
Posty: 16
Rejestracja: 21 lip 2007, o 11:58
Płeć: Mężczyzna
Lokalizacja: Puławy
Podziękował: 4 razy

Rozwiąż równania

Post autor: jeremi18 » 31 lip 2007, o 14:56

mam prośbe . mógłbys mi dokładnie wytłumaczyć jak obliczyłeś a,b i c !!!!

luka52
Gość Specjalny
Gość Specjalny
Posty: 8602
Rejestracja: 1 maja 2006, o 20:54
Płeć: Mężczyzna
Lokalizacja: Kraków
Podziękował: 47 razy
Pomógł: 1817 razy

Rozwiąż równania

Post autor: luka52 » 31 lip 2007, o 15:02

Podstawiając \(\displaystyle{ y_2}\) do naszego równania, otrzymamy coś takiego:
\(\displaystyle{ 2(2a) - 3(2ax + b) + ax^2 + bx + c = x^2 + 2\\
ax^2 + x (b - 6a) + 4a - 3b + c = x^2 +2}\)

Przyrównując teraz współczynniki przy odpowiednich potęgach możemy łatwo wyznaczyć a, b i c.

PS. Poprawiłem nazwę tematu

ODPOWIEDZ