Strona 1 z 1
Płaszczyzna przecinająca sześcian
: 27 lip 2007, o 20:51
autor: Sokół
Sześcian o krawędzi długości 1 dm przecięto płaszczyzną przechodzącą przez jeden z jego wierzchołków. Otrzymany przekrój jest trójkątem równoramiennym, którego ramię jest 5 razy dłuższe od podstawy. Oblicz pole tego trójkąta.
wynik mi wychodzi jakiś dziwny, \(\displaystyle{ \frac{3\sqrt{11}}{98} dm^2}\)
Może zły rysunek robię? ;/
[Obrazek wygasł]
objaśnienie:
d (na niebiesko) - ramię trójkąta
\(\displaystyle{ \frac{1}{5}d}\) ( na czerwono) - podstawa trójkąta
a (na czarno) - krawędź sześcianu
e (na zielono) - żeby mi zrobił się trójkąt prostokątny (równoramienny) o przeciwprostokątnej, którą jest podstawa trójkąta
Płaszczyzna przecinająca sześcian
: 27 lip 2007, o 21:21
autor: Anathemed
Hm... Mi wyszło \(\displaystyle{ \frac{99}{98}}\) To jest dobry wynik?
Korzystając z Twoich oznaczeń mamy:
\(\displaystyle{ d= \sqrt{1 + e^2}}\)
\(\displaystyle{ \frac{1}{5}d = \sqrt{2}e}\)
Gdy porównamy te równania, otrzymamy równanie: \(\displaystyle{ \sqrt{1 + e^2} = 5\sqrt{2}e}\), skąd otrzymujemy \(\displaystyle{ e = \frac{1}{7}}\).
Następnie obliczamy wysokość naszego trójkąta korzystając z Twierdzenia pitagorasa dla: wysokości naszego trójkąta, połowy jego podstawy i ramienia. Mając wysokość i długość podstawy obliczamy pole
Płaszczyzna przecinająca sześcian
: 27 lip 2007, o 21:50
autor: luka52
IMHO będzie to tak:
\(\displaystyle{ e = \frac{\sqrt{2}}{2} \frac{1}{5}d = \frac{\sqrt{2}d}{10}\\
(a=1)\\
d^2 = 1 + e^2 d^2 - \frac{2}{100}d^2 = 1 \frac{49}{50}d^2 = 1 d = \sqrt{\frac{50}{49}}}\)
Następnie zakładając, że wysokość trójkąta to h, mamy:
\(\displaystyle{ h = \sqrt{d^2 - \left( \frac{1}{2 \cdot 5}d \right)^2} = \frac{3 \sqrt{11}}{10}d = \frac{3 \sqrt{11}}{10} \sqrt{\frac{50}{49}}\\
S = \frac{1}{2} \cdot h \cdot \frac{1}{5}d = \frac{1}{10} \cdot \frac{3 \sqrt{11}}{10} \cdot \sqrt{\frac{50}{49}} \cdot \sqrt{\frac{50}{49}} = \frac{3 \sqrt{11}}{98}}\)
Zatem wynik jest (chyba) prawidłowy
Płaszczyzna przecinająca sześcian
: 27 lip 2007, o 22:22
autor: Anathemed
luka52 pisze:IMHO będzie to tak:
\(\displaystyle{ = \frac{3 \sqrt{11}}{98}}\)
Zatem wynik jest (chyba) prawidłowy
Tak, wynik jest prawidłowy, ja popełniłem błąd (na samiutkim końcu zgubiłem pierwiastek w liczniku (
\(\displaystyle{ \sqrt{99} = 3\sqrt{11}}\))